• 제목/요약/키워드: osteoblast adhesion

검색결과 61건 처리시간 0.027초

DNA microarray analysis of gene expression of MC3T3-E1 osteoblast cell cultured on anodized- or machined titanium surface

  • Park, Ju-Mi;Jeon, Hye-Ran;Pang, Eun-Kyoung;Kim, Myung-Rae;Kang, Na-Ra
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.299-308
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate adhesion and gene expression of the MC3T3-E1 cells cultured on machined titanium surface (MS) and anodized titanium surface (AS) using MTT test, Scanning electron micrograph and cDNA microarray. Materials and Methods: The MTT test assay was used for examining the proliferation of MC3T3-E1 cells, osteoblast like cells from Rat calvaria, on MS and AS for 24 hours and 48 hours. Cell cultures were incubated for 24 hours to evaluate the influence of the substrate geometry on both surfaces using a Scanning Electron Micrograph (SEM). The cDNA microarray Agilent Rat 22K chip was used to monitor expressions of genes. Results: After 24 hours of adhesion, the cell density on AS was higher than MS (p < 0.05). After 48 hours the cell density on both titanium surfaces were similar (p > 0.05). AS had the irregular, rough and porous surface texture. After 48 hours incubation of the MC3T3-E1 cells, connective tissue growth factor (CTGF) was up-regulated on AS than MS (more than 2 fold) and the insulin-like growth factor 1 receptor was down-regulated (more than 2 fold) on AS than MS. Conclusion: Microarray assay at 48 hours after culturing the cells on both surfaces revealed that osteoinductive molecules appeared more prominent on AS, whereas the adhesion molecules on the biomaterial were higher on MS than AS, which will affect the phenotype of the plated cells depending on the surface morphology.

Comparative study on the cellular activities of osteoblast-like cells and new bone formation of anorganic bone mineral coated with tetra-cell adhesion molecules and synthetic cell binding peptide

  • Yu, Hyeon-Seok;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Yang, Dong-Jun;Park, Kwang-Bum;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제41권6호
    • /
    • pp.293-301
    • /
    • 2011
  • Purpose: We have previously reported that tetra-cell adhesion molecule (T-CAM) markedly enhanced the differentiation of osteoblast-like cells grown on anorganic bone mineral (ABM). T-CAM comprises recombinant peptides containing the Arg- Gly-Asp (RGD) sequence in the tenth type III domain, Pro-His-Ser-Arg-Asn (PHSRN) sequence in the ninth type III domain of fibronectin (FN), and the Glu-Pro-Asp-Ilu-Met (EPDIM) and Tyr-His (YH) sequence in the fourth fas-1 domain of ${\beta}$ig-h3. Therefore, the purpose of this study was to evaluate the cellular activity of osteoblast-like cells and the new bone formation on ABM coated with T-CAM, while comparing the results with those of synthetic cell binding peptide (PepGen P-15). Methods: To analyze the cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed, andto analyze gene expression, northernblot was performed. Mineral nodule formations were evaluated using alizarin red stain. The new bone formations of each group were evaluated using histologic observation and histomorphometrc analysis. Results: Expression of alkaline phosphatase mRNA was similar in all groups on days 10 and 20. The highest expression of osteopontin mRNA was observed in the group cultured with ABM/P-15, followed by those with ABM/T-CAM and ABM on days 20 and 30. Little difference was seen in the level of expression of collagen type I mRNA on the ABM, ABM/T-CAM, and ABM/P-15 cultured on day 20. There were similar growth and proliferation patterns for the ABM/T-CAM and ABM/P-15. The halo of red stain consistent with $Ca^{2+}$ deposition was wider and denser around ABM/T-CAM and ABM/P-15 particles than around the ABM particles. The ABM/T-CAM group seemed to have bone forming bioactivity similar to that of ABM/P-15. A complete bony bridge was seen in two thirds of the defects in the ABM/T-CAM and ABM/P-15 groups. Conclusions: ABM/T-CAM, which seemed to have bone forming bioactivity similar to ABM/P-15, was considered to serve as effective tissue-engineered bone graft material.

Phelligridin D maintains the function of periodontal ligament cells through autophagy in glucose-induced oxidative stress

  • Kim, Ji-Eun;Kim, Tae-Gun;Lee, Young-Hee;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • 제50권5호
    • /
    • pp.291-302
    • /
    • 2020
  • Purpose: The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). Methods: Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. Results: Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. Conclusions: This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.

치과용 임플란트 적용 비귀금속 코어와 관련된 전조골세포의 변화 (Changes in pre-osteoblast cells associated with non-precious metal cores with dental implants: Pilot test)

  • 박정현;강신영;김종우;김장주;김웅철;김지환
    • 대한치과기공학회지
    • /
    • 제40권2호
    • /
    • pp.63-69
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the non-precious metal core materials used in the dental laboratory to fabricate the implant superstructure by CAD / CAM method. And to observe and compare the morphology and distribution of the osteoblasts in relation to implant osseointegration. Methods: In this study, the mandibular right first molar tooth model was selected as an international standard to produce a single core. Using this model, the impression was made with the silicone rubber, the tooth model was scanned, and a single core was designed and 5-axis milling was performed. The materials used were Cobalt-Chromium and Nickel-Chromium, and the cores for dental implant top structures were fabricated according to the procedures of the dental labs. After the fabrication, the marginal area of the core was separated and cell culture experiment was performed. The osteoblast cells used MC3T3-E1, which is currently widely used. For morphological analysis of osteoblasts, cells were posttreated and observed using CLSM (Confocal Laser Scanning Microscope) and compared. Results: The cell adhesion behavior of the specimen surface measured by CLSM was uniformly distributed in specimen A (Cobalt-Chromium) than in specimen B (Nickel-Chromium). The distribution and changes of the cells were different in the two specimens. Conclusion : It is possible to confirm that specimen A (Cobalt-Chromium) is suitable for the living body through adhesion and proliferation of osteoblasts related to implant osseointegration in the non-precious metal superstructure used after implantation. It is considered that it is preferable to use Co-Cr when fabricating the superstructure.

분사처리 후 양극산화 처리한 임플란트 표면이 골모 유사 세포의 반응에 미치는 영향 (The effect of blasting and anodizing-combined treatment of implant surface on response of osteoblast-like cell)

  • 서보용;김영민;최재원;윤미정;전영찬;정창모;김규천;허중보
    • 대한치과보철학회지
    • /
    • 제53권1호
    • /
    • pp.9-18
    • /
    • 2015
  • 목적: 본 연구는 Tricalcium phosphate 입자를 사용한 모재분사 후 양극산화처리를 한 임플란트 표면의 특성을 분석하고, 골모유사세포의 반응을 평가하고자 하였다. 재료 및 방법: 직경 10 mm, 두께 3.0 mm 크기의 Grade IV 타이타늄 디스크를 시편으로 사용하였으며, 양극산화처리(ASD)군, 모재 분사 후 양극산화(RBM/ASD)군, 대조군(machined surface)으로 나누어 표면처리하였다. 표면처리 후 FE-SEM, 에너지분산분광기와 주사전자현미경을 사용하여 표면특성을 평가하였다. 세포의 부착을 평가하기 위해 골모유사세포를 이용해 crystal violet assay를 통해 세포부착을 평가하고, 세포 형태는 공초점 레이저 현미경을 사용하여 관찰하였다. 세포증식을 평가하기 위해 XTT 시험을, 세포분화는 역전사 중합효소연쇄반응을 사용하였으며 침착된 칼슘의 양을 측정하기 위해 Alizarin red S stain 을 이용하였다. 비교분석은 one-way ANOVA (SPSS version 18.0)로 유의수준 5%에서 검정하였다. 결과: ASD군과 RBM/ASD군에서, 분화구 모양의 표면 형상이 나타났으며, 대조군과 비교하여 산소와 인산 이온이 관찰되었다. 단위면적당 거칠기는 대조군에서 $0.08{\pm}0.04{\mu}m$, ASD군에서 $0.52{\pm}0.14{\mu}m$, RBM/ASD군에서 $1.45{\pm}0.25{\mu}m$를 보였다. 세포반응실험에서, ASD군과 RBM/ASD군이 대조군에 비해 세포의 부착정도가 높았으며 대조군이 세포증식에서 가장 높은 값을 보였다(P<.05). RT-PCR 실험에서, RBM/ASD군이 다른 군들보다 높은 ALP를 보였다(P<.05). ASD군과 비교했을 때 RBM/ASD군은 세포부착과 증식 정도에서 큰 값을 보였다(P<.05). 결론: 본 연구의 한계내에서 모재분사 후 양극산화 처리한 티타늄 표면 처리 방식이 단순 양극산화 처리한 군이나 대조군보다 골모유사세포의 반응에 효과적인 방법임을 확인하였다.

Establishment of Validation Methods to Test the Biocompatibility of Titanium Dioxide

  • Kim, Mi-Ju;Lim, Hee-Joung;Lee, Byung Gun;Kim, Jong-Hoon;Choi, Jinsub;Kang, Hee-Gyoo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1857-1863
    • /
    • 2013
  • Most of biomaterials come in direct contact with the body, making standardized methods of evaluation and validation of biocompatibility an important aspect to biomaterial development. However, biomaterial validation guidelines have not been fully established, until now. This study was to compare the in vitro behavior of osteoblasts cultured on nanomaterial $TiO_2$ surfaces to osteoblast behavior on culture plates. Comparisons were also made to cells grown in conditioned media (CM) that creates an environment similar to the in vivo environment. Comparisons were made between the different growth conditions for osteoblast adhesion, proliferation, differentiation, and functionality. We found that the in vivo-like system of growing cells in concentrated CM provided a good validation method for biomaterial development and in vivo implant therapy. The $TiO_2$ materials were biocompatible, showing similar behavior to that observed in vivo. This study provided valuable information that would aid in the creation of guidelines into standardization and evaluation of biocompatibility in $TiO_2$ biomaterials.

블라스팅과 양극산화된 티타늄 표면이 조골세포의 부착 및 분화에 미치는 영향 (Effect of Blasted or Anodized Titanium Surface Roughness on Adhesion and Differentiation of Osteoblasts)

  • 박찬진;조리라;이양진;고성희
    • 구강회복응용과학지
    • /
    • 제22권3호
    • /
    • pp.261-270
    • /
    • 2006
  • The success of an implant is determined by its integration into the tissue surrounding the biomaterial. Surface roughness is considered to influence the behavior of adherent cells. The aim of this in vitro study was to determine the effect of surface roughness on Saos-2 osteoblast-like cells. Titanium disks, blasted with $75{\mu}m$ aluminum oxide particles and anodic oxidized and machined titanium disks were prepared. Saos-2 were plated on the disks at a density of 50,000 cells per well in 48-well dishes. After 1 hour, 1 day, 6 days cell numbers were counted. One day, 6 days after plating, alkaline phosphatase(ALPase) activity was determined. Compared to experimental groups, the number of cells was significantly higher on control group. The stimulatory effect of surface roughness on ALPase was more pronounced on the experimental groups than on control group. These results demonstrate that surface roughness alters proliferation and differentiation of osteoblasts. The results also suggest that implant surface roughness may play a role in determining phenotypic expression of cells.

Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration

  • Deng, Xu Liang;Yang, Xiao Ping
    • Carbon letters
    • /
    • 제13권3호
    • /
    • pp.139-150
    • /
    • 2012
  • Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by $CO_2$ bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The ${\beta}$-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.

이온 빔 조사 처리된 키토산 스펀지의 세포적합도에 관한 연구 (A study on cytocompatibility of ion beam-irradiated chitosan sponges)

  • 구영
    • Journal of Periodontal and Implant Science
    • /
    • 제28권2호
    • /
    • pp.281-291
    • /
    • 1998
  • Chitosan is a biodegradable and non-toxic material with a molecular weight of 800-1,500Kd which can be obtained in various forms with extraordinary chemical structures and biological characteristics of which enables it to be used in many fields as a biomaterial. Ion irradiation is a useful tool to modify chemical structures and physical properties of high molecular weight polymers. The basic hypothesis of this study is that when surface properties of chitosan in a sponge form are modified with ion beam-irradiation and cell adhesion properties of chitosan would improve and thereby increase the regenerative ability of the damaged bone. The purpose of this study was to illuminate the changes in the cytocompatibility of chitosan sponges after ion beam-irradiation as a preliminary research. Argon($Ar^+$) ions were irradiated at doses of $5{\times}10^{13}$, $5{\times}10^{15}$ at 35 keV on surfaces of each sponges. Cell adhesion and activity of alkaline phosphatases were studied using rat fetal osteoblasts. The results of this study show hat ion beam-irradiation at optimal doses($5{\times}10^^{13}\;Ar^+\;ion/cm^2$) is a useful method to improve cytocompatibility without sacrificing cell viability and any changing cell phenotypes. These results show that ion beam-irradiated chitosan sponges can be further applied as carriers in tissue engineering and as bone filling materials.

  • PDF

염기처리한 SLA 표면이 표면 특성 및 골모유사세포의 반응에 미치는 영향 (Effects of SLA surface treated with NaOH on surface characteristics and response of osteoblast-like cell)

  • 박진철;김주현;강은숙;류재준;허중보
    • 대한치과보철학회지
    • /
    • 제52권3호
    • /
    • pp.211-221
    • /
    • 2014
  • 목적: 기존의 SLA 표면을 높은 친수성을 가지는 표면으로 개질하고자 NaOH에 침적하는 방법이 SLA 표면 형상 및 특성에 어떤 영향을 미치는지 알아보고, 골모유사세포의 증식, 부착 및 분화에 어떤 영향을 미치는지 알아보고자 계획되었다. 재료 및 방법: Machined surface (대조군), SLA surface (SLA 군), SLA에 NaOH 처리한 표면(SLA/NaOH 군)의 각 시편을 제조하고 친수성을 극대화한 SLA/NaOH 군의 표면 특성을 평가하기 위해 표면성분(XPS), 표면 거칠기, 표면 접촉각 등을 평가하였다. 그 이후 MG-63 세포 배양 후 이번 실험에서 만든 표면들이 세포독성을 가지는지를 평가하고, WST assay를 통하여 세포 증식, F-actin 염색을 통하여 세포의 부착형태를 관찰하였다. 이 후 ALP assay를 통하여 세포 분화를 평가하였다. 각 군간 통계측정을 위해 ANOVA 후 다중비교를 하였다(P<.05). 결과: SLA/NaOH 군의 접촉각은 $5.59{\pm}1.13$도였다. 모든 군들은 MG-63 세포에 대해 세포독성을 가지지 않았다. 세포 부착 평가에서 SLA/NaOH 군에서 가장 높은 부착 정도를 보였고(P<.05), Machined 군과 SLA 군에서도 표면 거칠기가 높은 SLA군에서 더 높은 세포 부착정도를 확인할 수 있었다(P<.05). 배양 7일까지 모든 군에서 MG-63 세포의 증식이 점차 증가하였다. 모든 군에서 3일과 7일에 세포의 증식에서 유의할 만한 차이가 보였고, SLA/NaOH 군에서 가장 높은 세포증식을 보였다. ALP 활성도는 7일에서는 세 군 사이에 차이가 없었다. 하지만 14일에는 SLA/NaOH 군이 유의성 있는 증대를 보였다(P<.05). 결론: 본 연구를 통하여 NaOH를 처리하는 수화방식을 통해 SLA 표면을 변형시킴으로서 세포의 부착, 증식 및 분화를 촉진시켜 임플란트의 골유착을 증진시킬 수 있는 가능성을 확인하였다.