DOI QR코드

DOI QR Code

Establishment of Validation Methods to Test the Biocompatibility of Titanium Dioxide

  • Kim, Mi-Ju (Department of Biomedical Laboratory Science, College of Health Science, Eulji University) ;
  • Lim, Hee-Joung (Laboratory of Stem Cell and Tissue Regeneration, Division of Biotechnology, College of Life Science & Biotechnology, Korea University) ;
  • Lee, Byung Gun (Department of Chemical Engineering and Biotechnology, Inha University) ;
  • Kim, Jong-Hoon (Laboratory of Stem Cell and Tissue Regeneration, Division of Biotechnology, College of Life Science & Biotechnology, Korea University) ;
  • Choi, Jinsub (Department of Chemical Engineering and Biotechnology, Inha University) ;
  • Kang, Hee-Gyoo (Department of Biomedical Laboratory Science, College of Health Science, Eulji University)
  • Received : 2013.03.04
  • Accepted : 2013.04.10
  • Published : 2013.06.20

Abstract

Most of biomaterials come in direct contact with the body, making standardized methods of evaluation and validation of biocompatibility an important aspect to biomaterial development. However, biomaterial validation guidelines have not been fully established, until now. This study was to compare the in vitro behavior of osteoblasts cultured on nanomaterial $TiO_2$ surfaces to osteoblast behavior on culture plates. Comparisons were also made to cells grown in conditioned media (CM) that creates an environment similar to the in vivo environment. Comparisons were made between the different growth conditions for osteoblast adhesion, proliferation, differentiation, and functionality. We found that the in vivo-like system of growing cells in concentrated CM provided a good validation method for biomaterial development and in vivo implant therapy. The $TiO_2$ materials were biocompatible, showing similar behavior to that observed in vivo. This study provided valuable information that would aid in the creation of guidelines into standardization and evaluation of biocompatibility in $TiO_2$ biomaterials.

Keywords

References

  1. Paul, J.; Victoria, S. Curr. Pharm. Des. 2001, 7, 613. https://doi.org/10.2174/1381612013397807
  2. Kim, H.; Anita, V.; Lynda, F.; Morten, A. Bone 2009, 44, 1026. https://doi.org/10.1016/j.bone.2009.03.671
  3. Gary, S.; Jane, B. Endocrine. 1993, 14, 424.
  4. Saral, A.; Harold, L. M.; Thomas, A. L,; David, J. B.; Subburaman, M. J. Bone Miner Res. 1993, 8, 157.
  5. Kasemo, B. J. Prosthet. Dent. 1983, 49, 832. https://doi.org/10.1016/0022-3913(83)90359-1
  6. Nanci, A.; Wuest, J. D.; Peru, L.; Brunet, P.; Sharma, V.; Zalzal, S.; McKee, M. D. J. Biomed. Mater. Res. 1998, 40, 324. https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L
  7. Davies, J. E. J. Dent. Educ. 2003, 67, 932.
  8. Albrektsson, T.; Wennerberg, A. Int. J. Prosthodont. 2004, 17, 536.
  9. Linder, L.; Carlsson, A.; Marsal, L.; Bjursten, L. M.; Branemark, P. I. J. Bone Joint Surg. 1988, 70, 550.
  10. Puleo, D. A.; Holleran, L. A.; Doremus, R. H.; Bizios, R. J. Biomed. Mater. Res. A 1991, 25, 711. https://doi.org/10.1002/jbm.820250603
  11. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. Solar Energy Mater Solar Cells 2006, 90, 2011. https://doi.org/10.1016/j.solmat.2006.04.007
  12. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano. Lett. 2007, 7, 69. https://doi.org/10.1021/nl062000o
  13. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Varghese. O. K.; Grimes, C. A. Langmuir 2007, 23, 12445. https://doi.org/10.1021/la7020403
  14. Kislyuk, V. V.; Dimitriev, O. P. J. Nanosci. Nanotechnol. 2008, 8, 131. https://doi.org/10.1166/jnn.2008.N16
  15. Albu, S. P.; Ghicov, A.; Macak, J. M.; Hahn, R.; Schmuki, P. Nano. Lett. 2007, 7, 1286. https://doi.org/10.1021/nl070264k
  16. Jia, Y.; Kleinhammes, A.; Kulkarni, H.; McGuire, K.; McNeil, L. E.; Wu, Y. J. Nanosci. Nanotechnol. 2007, 7, 458. https://doi.org/10.1166/jnn.2007.132
  17. Su, H.; Dong, Q.; Han, J.; Zhang, D.; Guo, Q. Biomacromolecules 2008, 9, 499. https://doi.org/10.1021/bm700993m
  18. Maggie, P.; Karthik, S.; Sorachon, Y.; Haripriya, E. P.; Oomman, K. V.; Gopal, K. M.; Thomas, A. L.; Adriana, F.; Craig, A. G. J. Phys. Chem. B 2006, 110, 16179. https://doi.org/10.1021/jp064020k
  19. Liu, S.; Chen, A. Langmuir 2005, 21, 8409. https://doi.org/10.1021/la050875x
  20. Varghese, O. K.; Grimes, C. A. J. Nanosci. Nanotechnol. 2003, 3, 277. https://doi.org/10.1166/jnn.2003.158
  21. Park, J.; Bauer, S.; Vonder, M. K.; Schmuki, P. Nano. Lett. 2007, 7, 1686. https://doi.org/10.1021/nl070678d
  22. Seunghan, Oh.; Chiara, D.; Li-Han, C.; Thomas, R. P.; Rita, R.; Jin, S. J. Biomed. Mater. Res. A 2006, 78, 97.
  23. Brammer, K. S.; Oh, S.; Gallagher, J. O.; Jin, S. Nano. Lett. 2008, 8, 786. https://doi.org/10.1021/nl072572o
  24. Juanli, G.; Ricardo, J. P.; Wallace, A.; Ingeborg, J. D.; Lyndon, F. C. Biomaterials 2007, 28, 5418. https://doi.org/10.1016/j.biomaterials.2007.08.032
  25. Park, J.; Bauer, S.; Mark, K.; Schmuki, P. Nano. Lett. 2007, 7, 1686. https://doi.org/10.1021/nl070678d
  26. Akemichi, U.; Yukiko, K.; Keiji, M.; Hideo, I. Matrix. Biology 2001, 20, 347. https://doi.org/10.1016/S0945-053X(01)00141-X
  27. Wei-qiang, Y.; Xing-quan, J.; Fu-qiang, Z.; Ling, Xu. J. Biomed. Mater. Res. A 2010, 4, 1012.
  28. Gong, D.; Grimes, C. A.; Varghese, O. K.; Chen, Z.; Hu, W.; Singh, R. S.; Chen, Zhi; Dickey, Elizabeth, C. J. Mater. Res. 2001, 16, 3331. https://doi.org/10.1557/JMR.2001.0457
  29. Zwilling, V.; Darque-Ceretti, E.; Bountry-Forveille, A.; David, D.; Perrin, M. Y.; Aucouturier, M. Surf. Interface Anal. 1999, 27, 629. https://doi.org/10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
  30. Gimble, J. M.; Nuttall, M. E. Endocrine 2004, 23, 183. https://doi.org/10.1385/ENDO:23:2-3:183
  31. Mahmoudifar, N.; Doran, P. M. Biomaterials 2005, 26, 7012. https://doi.org/10.1016/j.biomaterials.2005.04.062
  32. Linkhart, T. A.; Mohan, S.; Baylink, D. J. Bone 1996, 19, 1S. https://doi.org/10.1016/S8756-3282(96)00138-X
  33. Szebenyi, G.; Fallon, J. F. Int. Rev. Cytol. 1999, 185, 45.
  34. Scutt, A.; Bertram, P. Calcif. Tissue Int. 1999, 64, 69. https://doi.org/10.1007/s002239900581
  35. Kawaguchi, H.; Kurokawa, T.; Hanada, K.; Hiyama, Y.; Tamura, M.; Ogata, E.; Matsumoto, T. Endocrinology 1994, 135, 774. https://doi.org/10.1210/en.135.2.774
  36. Spector, J. A.; Greenwald, J. A.; Warren, S. M.; Bouletreau, P. J.; Crisera, F. E.; Mehrara, B. J.; Longaker, M. T. Plast. Reconstr. Surg. 2002, 109, 631. https://doi.org/10.1097/00006534-200202000-00033
  37. Zhang, X.; Sobue, T.; Hurley, M. M. Biochem. Biophys. Res. Commun. 2002, 290, 526. https://doi.org/10.1006/bbrc.2001.6217
  38. Wang, D. S.; Yamazaki, K.; Nohtomi, K.; Shizume, K.; Ohsumi, K.; Shibuya, M.; Demura, H.; Sato, K. J. Bone Miner. Res. 1996, 11, 472.
  39. Wang, D. S.; Miura, M.; Demura, H.; Sato, K. Endocrinology 1997, 138, 2953. https://doi.org/10.1210/en.138.7.2953
  40. Laintinen, M.; Halttunen, T.; Jortikka, L.; Teronen, O.; Sorsa, T.; Lindholm, T. S. Life Sci. 1999, 64, 847. https://doi.org/10.1016/S0024-3205(99)00006-5
  41. Barbara, B. D.; Lohmann, C. H.; Dean, D. D.; Sylvia, V. L.; Cochran, D. L.; Schwartz, Z. Annu. Rev. Mater. Res. 2001, 31, 357. https://doi.org/10.1146/annurev.matsci.31.1.357
  42. McGee-Russel, S. M. J. Histochem. Cytochem. 1958, 6, 22. https://doi.org/10.1177/6.1.22
  43. Nakamura, T.; Yamanuro, T.; Higash, S.; Kokubo, T.; Itoo, S. J. Biomed. Mater. Res. 1985, 19, 685. https://doi.org/10.1002/jbm.820190608
  44. Bruijin, J. D.; Klein, C.; Groot, K.; Blitterswijk, C. A. J. Biomed. Mater. Res. 1992, 26, 1365. https://doi.org/10.1002/jbm.820261008
  45. Kim, J. H.; Cho, K. P.; Chung, Y. S.; Kim, O. S.; Chung, S. S.; Lee, K. K.; Lee, D. J.; Lee, K. M.; Kim, Y. J. J. Nanosci. Nanotechnol. 2010, 10, 3581. https://doi.org/10.1166/jnn.2010.2235
  46. Hunter, G. K.; Goldberg, H. A. Proc. Natl. Acad. Sci. 1993, 90, 8562. https://doi.org/10.1073/pnas.90.18.8562
  47. Ganss, B.; Kim, R. H.; Sodek, J. Crit. Rev. Oral. Biol. Med. 1999, 1079.

Cited by

  1. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering vol.7, pp.6, 2014, https://doi.org/10.3390/ma7064105
  2. Porous Nanomaterials Targeting Autophagy in Bone Regeneration vol.13, pp.10, 2013, https://doi.org/10.3390/pharmaceutics13101572