DOI QR코드

DOI QR Code

Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration

  • Deng, Xu Liang (School and Hospital of Stomatology, Peking University) ;
  • Yang, Xiao Ping (The State Laboratory of Beijing City on Preparation and Processing of Novel Polymers, Department of Materials Science and Engineering, Beijing University of Chemical Technology)
  • Received : 2012.03.20
  • Accepted : 2012.05.28
  • Published : 2012.07.31

Abstract

Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by $CO_2$ bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The ${\beta}$-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.

Keywords

References

  1. Sequeira SJ, Soscia David A, Oztan B, Mosier Aaron P, Jean-Gilles R, Gadre A, Cady Nathaniel C, Yener B, Castracane J, Larsen M. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds. Biomaterials, 33, 3175 (2012). http://dx.doi.org/10.1016/j.biomaterials. 2012.01.010.
  2. Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Del Rev, 61, 1065 (2009). http://dx.doi.org/10.1016/j.addr.2009.07.008.
  3. Beachley V, Wen X. Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci, 35, 868 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.003.
  4. Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater, 15, 1988 (2005). http://dx.doi.org/10.1002/adfm.200500116.
  5. Hillmann G, Steinkamp-Zucht A, Geurtsen W, Gross G, Hoffmann A. Culture of primary human gingival fibroblasts on biodegradable membranes. Biomaterials, 23, 1461 (2002). http://dx.doi. org/10.1016/s0142-9612(01)00270-8.
  6. Owen GR, Jackson J, Chehroudi B, Burt H, Brunette DM. A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials, 26, 7447 (2005). http://dx.doi.org/10.1016/j. biomaterials.2005.05.055.
  7. Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui F, Watari F. A three-layered nano-carbonated hydroxyapatite/collagen/ PLGA composite membrane for guided tissue regeneration. Biomaterials, 26, 7564 (2005). http://dx.doi.org/10.1016/j.biomaterials. 2005.05.050.
  8. Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen- apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med, 19, 2925 (2008). http://dx.doi.org/10.1007/ s10856-008-3420-7.
  9. Kim HW, Yu HS, Lee HH. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A, 87, 25 (2008). http://dx.doi. org/10.1002/jbm.a.31677.
  10. An K, Liu H, Guo S, Kumar DNT, Wang Q. Preparation of fish gelatin and fish gelatin/poly(l-lactide) nanofibers by electrospinning. Int J Biol Macromol, 47, 380 (2010). http://dx.doi.org/10.1016/j. ijbiomac.2010.06.002.
  11. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater, 3, 321 (2007). http://dx.doi.org/10.1016/j.actbio. 2007.01.002.
  12. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly($\varepsilon$-caprolactone)/ gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29, 4532 (2008). http://dx.doi.org/10.1016/j.biomaterials. 2008.08.007.
  13. Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C, 30, 1204 (2010). http://dx.doi.org/10.1016/j.msec.2010.06.018.
  14. Jose MV, Thomas V, Dean DR, Nyairo E. Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer, 50, 3778 (2009). http://dx.doi. org/10.1016/j.polymer.2009.05.035.
  15. Lee TM, Yang CY, Chang E, Tsai RS. Comparison of plasmasprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings: in vivo study. J Biomed Mater Res A, 71, 652 (2004). http://dx.doi.org/10.1002/jbm.a.30190.
  16. Auclair-Daigle C, Bureau MN, Legoux JG, Yahia LH. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J Biomed Mater Res A, 73, 398 (2005). http://dx.doi. org/10.1002/jbm.a.30284.
  17. Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ. Bioactive glass coatings with hydroxyapatite and $Bioglass^{(R)}$ particles on Ti-based implants. 1. Processing. Biomaterials, 21, 105 (2000). http://dx.doi.org/10.1016/s0142-9612(99)00131-3.
  18. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res, 81 (2002).
  19. Liu Q, Wijn JR, Bakker D, Blitterswijk CA. Surface modification of hydroxyapatite to introduce interfacial bonding with polyactiveTM 70/30 in a biodegradable composite. J Mater Sci Mater Med, 7, 551 (1996). http://dx.doi.org/10.1007/bf00122178.
  20. Kikuchi M, Suetsugu Y, Tanaka J, Akao M. Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. J Mater Sci Mater Med, 8, 361 (1997). http://dx.doi. org/10.1023/a:1018580816388.
  21. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys, 20, 92 (1998). http://dx.doi.org/10.1016/s1350-4533(98)00007-1.
  22. Du C, Cui FZ, Zhu XD, de Groot K. Three-dimensional nano-HAp/ collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res, 44, 407 (1999). http://dx.doi.org/10.1002/ (sici)1097-4636(19990315)44:4<407::aid-jbm6>3.0.co;2-t.
  23. Du C, Cui FZ, Feng QL, Zhu XD, de Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res, 42, 540 (1998). http://dx.doi.org/10.1002/ (sici)1097-4636(19981215)42:4<540::aid-jbm9>3.0.co;2-2.
  24. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res, 51, 475 (2000). http:// dx.doi.org/10.1002/1097-4636(20000905)51:3<475::aidjbm23> 3.0.co;2-9.
  25. Ueyama Y, Ishikawa K, Mano T, Koyama T, Nagatsuka H, Suzuki K, Ryoke K. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials, 23, 2027 (2002). http:// dx.doi.org/10.1016/s0142-9612(01)00332-5.
  26. Kikuchi M, Koyama Y, Takakuda K, Miyairi H, Shirahama N, Tanaka J. In vitro change in mechanical strength of $\beta$-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. J Biomed Mater Res, 62, 265 (2002). http://dx.doi.org/10.1002/jbm.10248.
  27. Chen F, Wang ZC, Lin CJ. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett, 57, 858 (2002). http://dx.doi.org/10.1016/s0167-577x(02)00885-6.
  28. Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials, 24, 3247 (2003). http://dx.doi. org/10.1016/s0142-9612(03)00190-x.
  29. Deng X, Hao J, Wang C. Preparation and mechanical properties of nanocomposites of poly(d,l-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials, 22, 2867 (2001). http://dx.doi. org/10.1016/s0142-9612(01)00031-x.
  30. Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials, 26, 5221 (2005). http://dx.doi. org/10.1016/j.biomaterials.2005.01.047.
  31. Yamauchi K, Goda T, Takeuchi N, Einaga H, Tanabe T. Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials, 25, 5481 (2004). http://dx.doi. org/10.1016/j.biomaterials.2003.12.057.
  32. Formhals A. US Patent No. 1 975 504 (1934).
  33. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules, 3, 232 (2002). http://dx.doi.org/10.1021/bm015533u.
  34. Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 25, 877 (2004). http://dx.doi.org/10.1016/ s0142-9612(03)00593-3.
  35. Mei F, Zhong J, Yang X, Ouyang X, Zhang S, Hu X, Ma Q, Lu J, Ryu S, Deng X. Improved biological characteristics of poly(Llactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules, 8, 3729 (2007). http://dx.doi.org/10.1021/bm7006295.
  36. Cai Q, Xu Q, Feng Q, Cao X, Yang X, Deng X. Biomineralization of electrospun poly(L-lactic acid)/gelatin composite fibrous scaffold by using a supersaturated simulated body fluid with continuous $CO_{2}$ bubbling. Appl Surf Sci, 257, 10109 (2011). http://dx.doi. org/10.1016/j.apsusc.2011.06.157.
  37. Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules, 7, 2237 (2006). http://dx.doi.org/10.1021/ bm060391v.
  38. Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules, 9, 505 (2008). http://dx.doi. org/10.1021/bm7009976.
  39. Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, Endo N. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B, 72, 94 (2005). http://dx.doi.org/10.1002/jbm.b.30136.
  40. Liu H, Cai Q, Lian P, Fang Z, Duan S, Ryu S, Yang X, Deng X. The biological properties of carbon nanofibers decorated with $\beta$-tricalcium phosphate nanoparticles. Carbon, 48, 2266 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.042.
  41. Kim H-W, Yu H-S, Lee H-H. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J J Biomed Mater Res A, 87, 25 (2008). http://dx.doi.org/10.1002/jbm.a.31677.
  42. Murphy WL, Kohn DH, Mooney DJ. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res, 50, 50 (2000). http://dx.doi.org/10.1002/(sici)1097-4636(200004)50:1<50::aid-jbm8>3.0.co;2-f.
  43. Madurantakam PA, Rodriguez IA, Cost CP, Viswanathan R, Simpson DG, Beckman MJ, Moon PC, Bowlin GL. Multiple factor interactions in biomimetic mineralization of electrospun scaffolds. Biomaterials, 30, 5456 (2009). http://dx.doi.org/10.1016/j.biomaterials. 2009.06.043.
  44. Wang B, Cai Q, Zhang S, Yang X, Deng X. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. J Mech Behav Biomed Mater, 4, 600 (2011). http://dx.doi.org/10.1016/j.jmbbm.2011.01.008.
  45. Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S. Poly-Llactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A, 82, 445 (2007). http://dx.doi.org/10.1002/jbm.a.31166.
  46. Wataha JC, Craig RG, Hanks CT. Precision of and new methods for testing in vitro alloy cytotoxicity. Dent Mater, 8, 65 (1992). http:// dx.doi.org/10.1016/0109-5641(92)90056-i.
  47. Zhang R, Ma PX. Poly($\alpha$-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res, 44, 446 (1999). http:// dx.doi.org/10.1002/(sici)1097-4636(19990315)44:4<446::aidjbm11> 3.0.co;2-f.
  48. Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules, 8, 2602 (2007). http://dx.doi.org/10.1021/ bm700451p.
  49. Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng, 13, 579 (2007). http://dx.doi.org/10.1089/ten.2006.0205.
  50. Wang HL, Miyauchi M, Takata T. Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study. J Periodont Res, 37, 340 (2002). http://dx.doi.org/10.1034/j.1600- 0765.2002.01625.x.
  51. Isikli C, Hasirci V, Hasirci N. Development of porous chitosan- gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regener Med, 6, 135 (2012). http://dx.doi.org/10.1002/term.406.
  52. Ko YH, Seo DS, Lee JK. Biological behavior of MG63 cells on the hydroxyapatite surface. Bioceram Develop Appl, 1, D101126 (2011). http://dx.doi.org/10.4303/bda/D101126.

Cited by

  1. A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites vol.37, pp.1, 2013, https://doi.org/10.7317/pk.2013.37.1.47