DOI QR코드

DOI QR Code

Phelligridin D maintains the function of periodontal ligament cells through autophagy in glucose-induced oxidative stress

  • Kim, Ji-Eun (Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry) ;
  • Kim, Tae-Gun (Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry) ;
  • Lee, Young-Hee (Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry) ;
  • Yi, Ho-Keun (Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry)
  • Received : 2019.07.07
  • Accepted : 2020.06.24
  • Published : 2020.10.30

Abstract

Purpose: The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). Methods: Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. Results: Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. Conclusions: This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.

Keywords

References

  1. Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000 2000;24:253-69. https://doi.org/10.1034/j.1600-0757.2000.2240113.x
  2. Hou J, Yamada S, Kajikawa T, Ozaki N, Awata T, Yamaba S, et al. Role of ferritin in the cytodifferentiation of periodontal ligament cells. Biochem Biophys Res Commun 2012;426:643-8. https://doi.org/10.1016/j.bbrc.2012.09.008
  3. Hoz L, Romo E, Zeichner-David M, Sanz M, Nunez J, Gaitan L, et al. Cementum protein 1 (CEMP1) induces differentiation by human periodontal ligament cells under three-dimensional culture conditions. Cell Biol Int 2012;36:129-36. https://doi.org/10.1042/CBI20110168
  4. Choi HD, Noh WC, Park JW, Lee JM, Suh JY. Analysis of gene expression during mineralization of cultured human periodontal ligament cells. J Periodontal Implant Sci 2011;41:30-43. https://doi.org/10.5051/jpis.2011.41.1.30
  5. Dahiya P, Kamal R, Gupta R, Bhardwaj R, Chaudhary K, Kaur S. Reactive oxygen species in periodontitis. J Indian Soc Periodontol 2013;17:411-6. https://doi.org/10.4103/0972-124X.118306
  6. Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol 2018;45:150-66. https://doi.org/10.1111/jcpe.12803
  7. Zheng J, Chen S, Albiero ML, Vieira GH, Wang J, Feng JQ, et al. Diabetes activates periodontal ligament fibroblasts via $NF-{\kappa}B$ in vivo. J Dent Res 2018;97:580-8. https://doi.org/10.1177/0022034518755697
  8. Preshaw PM, Bissett SM. Periodontitis and diabetes. Br Dent J 2019;227:577-84. https://doi.org/10.1038/s41415-019-0794-5
  9. Lee YH, Kim JS, Kim JE, Lee MH, Jeon JG, Park IS, et al. Nanoparticle mediated $PPAR{\gamma}$ gene delivery on dental implants improves osseointegration via mitochondrial biogenesis in diabetes mellitus rat model. Nanomedicine (Lond) 2017;13:1821-32. https://doi.org/10.1016/j.nano.2017.02.020
  10. Covani U, Marconcini S, Derchi G, Barone A, Giacomelli L. Relationship between human periodontitis and type 2 diabetes at a genomic level: a data-mining study. J Periodontol 2009;80:1265-73. https://doi.org/10.1902/jop.2009.080671
  11. Jansson H, Lindholm E, Lindh C, Groop L, Bratthall G. Type 2 diabetes and risk for periodontal disease: a role for dental health awareness. J Clin Periodontol 2006;33:408-14. https://doi.org/10.1111/j.1600-051X.2006.00929.x
  12. Mealey BL. Periodontal disease and diabetes. A two-way street. J Am Dent Assoc 2006;137 Suppl:26S-31S. https://doi.org/10.14219/jada.archive.2006.0404
  13. Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB 3rd. Autophagy: regulation and role in development. Autophagy 2013;9:951-72. https://doi.org/10.4161/auto.24273
  14. White E, Karp C, Strohecker AM, Guo Y, Mathew R. Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol 2010;22:212-7. https://doi.org/10.1016/j.ceb.2009.12.008
  15. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451:1069-75. https://doi.org/10.1038/nature06639
  16. Wei W, An Y, An Y, Fei D, Wang Q. Activation of autophagy in periodontal ligament mesenchymal stem cells promotes angiogenesis in periodontitis. J Periodontol 2018;89:718-27. https://doi.org/10.1002/JPER.17-0341
  17. Kamruzzaman SM, Endale M, Oh WJ, Park SC, Kim TH, Lee IK, et al. Antiplatelet activity of Phellinus baummii methanol extract is mediated by cyclic AMP elevation and inhibition of collagen-activated integrin-${\alpha(IIb)}$ ${\beta}_{3}$ and MAP kinase. Phytother Res 2011;25:1596-603. https://doi.org/10.1002/ptr.3450
  18. Hwang BS, Lee IK, Choi HJ, Yun BS. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii. Bioorg Med Chem Lett 2015;25:3256-60. https://doi.org/10.1016/j.bmcl.2015.05.081
  19. Jin QL, Zhang ZF, Lv GY, Cai WM, Cheng JW, Wang JG, et al. Antioxidant and DNA damage protecting potentials of polysaccharide extracted from Phellinus baumii using a delignification method. Carbohydr Polym 2016;152:575-82. https://doi.org/10.1016/j.carbpol.2016.07.027
  20. Lee S, Lee D, Jang TS, Kang KS, Nam JW, Lee HJ, et al. Anti-inflammatory phenolic metabolites from the edible fungus Phellinus baumii in LPS-stimulated RAW264.7 cells. Molecules 2017;22:1583. https://doi.org/10.3390/molecules22101583
  21. Kim JE, Takanche JS, Yun BS, Yi HK. Anti-inflammatory character of phelligridin D modulates periodontal regeneration in lipopolysaccharide-induced human periodontal ligament cells. J Periodontal Res 2018;53:816-24. https://doi.org/10.1111/jre.12570
  22. Kim JE, Takanche JS, Kim JS, Lee MH, Jeon JG, Park IS, et al. Phelligridin D-loaded oral nanotube titanium implant enhances osseointegration and prevents osteolysis in rat mandible. Artif Cells Nanomed Biotechnol 2018;46:397-407. https://doi.org/10.1080/21691401.2018.1458033
  23. Cho EJ, Hwang HJ, Kim SW, Oh JY, Baek YM, Choi JW, et al. Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol 2007;75:1257-65. https://doi.org/10.1007/s00253-007-0972-2
  24. Lee IK, Han MS, Lee MS, Kim YS, Yun BS. Styrylpyrones from the medicinal fungus Phellinus baumii and their antioxidant properties. Bioorg Med Chem Lett 2010;20:5459-61. https://doi.org/10.1016/j.bmcl.2010.07.093
  25. Lee YH, Kim GE, Song YB, Paudel U, Lee NH, Yun BS, et al. Davallialactone reduces inflammation and repairs dentinogenesis on glucose oxidase-induced stress in dental pulp cells. J Endod 2013;39:1401-6. https://doi.org/10.1016/j.joen.2013.06.033
  26. Yu MK, Lee JC, Kim JH, Lee YH, Jeon JG, Jhee EC, et al. Anti-inflammatory effect of peroxisome proliferator activated receptor gamma on human dental pulp cells. J Endod 2009;35:524-8. https://doi.org/10.1016/j.joen.2008.12.012
  27. Manfredi M, McCullough MJ, Vescovi P, Al-Kaarawi ZM, Porter SR. Update on diabetes mellitus and related oral diseases. Oral Dis 2004;10:187-200. https://doi.org/10.1111/j.1601-0825.2004.01019.x
  28. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996;19:257-67. https://doi.org/10.2337/diacare.19.3.257
  29. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405-12. https://doi.org/10.2337/diab.40.4.405
  30. Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett 2000;486:10-3. https://doi.org/10.1016/S0014-5793(00)02197-9
  31. Nishimura F, Terranova V, Foo H, Kurihara M, Kurihara H, Murayama Y. Glucose-mediated alteration of cellular function in human periodontal ligament cells. J Dent Res 1996;75:1664-71. https://doi.org/10.1177/00220345960750090801
  32. Kook SH, Lee D, Cho ES, Heo JS, Poudel SB, Ahn YH, et al. Activation of canonical Wnt/${\beta}$-catenin signaling inhibits $H_{2}O_{2}$-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts. Mol Cell Biochem 2016;411:83-94. https://doi.org/10.1007/s11010-015-2570-4
  33. Lee DH, Lim BS, Lee YK, Yang HC. Effects of hydrogen peroxide ($H_{2}O_{2}$) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol 2006;22:39-46. https://doi.org/10.1007/s10565-006-0018-z
  34. Kuang Y, Hu B, Feng G, Xiang M, Deng Y, Tan M, et al. Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells. Biogerontology 2020;21:13-27. https://doi.org/10.1007/s10522-019-09838-x
  35. Dene BA, Maritim AC, Sanders RA, Watkins JB 3rd. Effects of antioxidant treatment on normal and diabetic rat retinal enzyme activities. J Ocul Pharmacol Ther 2005;21:28-35. https://doi.org/10.1089/jop.2005.21.28
  36. Wang WH, Wu FH, Yang Y, Wu N, Zhang JS, Feng N, et al. Hypoglycemic effect of ethanol and ethyl acetate extract of Phellinus baumii fruiting body in streptozotocin-induced diabetic mice. Evid Based Complement Alternat Med 2015;2015:783460.
  37. Minamikawa H, Yamada M, Deyama Y, Suzuki K, Kaga M, Yawaka Y, et al. Effect of N-acetylcysteine on rat dental pulp cells cultured on mineral trioxide aggregate. J Endod 2011;37:637-41. https://doi.org/10.1016/j.joen.2011.02.012
  38. Lee YH, Kang YM, Heo MJ, Kim GE, Bhattarai G, Lee NH, et al. The survival role of peroxisome proliferator-activated receptor gamma induces odontoblast differentiation against oxidative stress in human dental pulp cells. J Endod 2013;39:236-41. https://doi.org/10.1016/j.joen.2012.11.006
  39. Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol 2013;15:713-20. https://doi.org/10.1038/ncb2788
  40. An Y, Liu W, Xue P, Zhang Y, Wang Q, Jin Y. Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment. J Clin Periodontol 2016;43:618-25. https://doi.org/10.1111/jcpe.12549

Cited by

  1. Effects of Connective Tissue Growth Factor on the Cell Viability, Proliferation, Osteogenic Capacity and mRNA Expression of Stem Cell Spheroids vol.11, pp.14, 2020, https://doi.org/10.3390/app11146572