• Title/Summary/Keyword: orthotropic laminated plates

Search Result 53, Processing Time 0.028 seconds

Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory

  • Ferruh Turan
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.145-161
    • /
    • 2023
  • This study investigates the influences of porosity on the stability of the orthotropic laminated plates under uniaxial and biaxial loadings based on the hyperbolic shear deformation theory. Three different porosity distribution are considered with three specific functions through the plate thickness. The stability equations of porous orthotropic laminated plates are derived by the virtual work principle. Applying the Galerkin method to partial differential equations, the critical buckling load relation of porous orthotropic laminated plates is obtained. After validating the accuracy of the proposed formulation in accordance with the available literature, a parametric analysis is performed to observe the sensitivity of the critical buckling load to shear deformation, porosity, orthotropy, loading factor, and different geometric properties.

Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM

  • Narwariya, Manoj;Choudhury, Achintya;Sharma, Avadesh K.
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.113-132
    • /
    • 2018
  • This paper presents the vibration and harmonic analysis of orthotropic laminated composite plate. The response of plate is determined using Finite Element Method. The eight noded shell 281 elements are used to analyze the orthotropic plates and results are obtained so that the right choice can be made in applications such as aircrafts, rockets, missiles, etc. to reduce the vibration amplitudes. Initially the model response for orthotropic plate and harmonic response for isotropic plate is verified with the available literature. The results are in good agreement with the available literature. Numerical results for the natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, thickness to width ratio and number of layers on natural frequency and harmonic response of the orthographic plates are also investigated. The natural frequency, mode shape and harmonic analysis of laminated composite plate has been determined using finite element package ANSYS.

The Influence of the Aspect Ratio on the Natural Frequency of the Specially Orthotropic Laminated Plates (특별직교이방성 적층판의 고유진동수에 대한 형상비의 영향)

  • Han, Bong Koo;Kim, Duck Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.219-225
    • /
    • 2011
  • Advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The simply supported laminated plates are analyzed by the specially orthotropic laminates theory. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis for such plate by means of the beam theory with unit width is reported. The plate aspect ratio considered is from 1 : 1 to 1 : 5. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper. the influence of the aspect ratio on the natural frequency of the specially orthotropic laminated plates is studied and it is concluded that the method used is sufficiently accurate for engineering purposes. The result of this paper can be used for simply supported laminated plates analysis.

Nonlinear Random Vibration Analysis of Thin Laminated Plates (얇은 적층 평판의 비선형 불규칙 진동해석)

  • Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.109-115
    • /
    • 2001
  • Composite materials also known as fiber reinforced plastics have been developed and used in many engineering applications due to their outstanding mechanical properties. Laminated plates as structural components that are made of in composite material are widely used. Therefore, nonlinear response of laminated composite plates modeled with finite elements and excited by stochastic loading is studied. The classical laminated plate theory is used to account for the variation of strains through the thickness for modeling laminated thin plates. Approximate nonlinear random vibration analysis is performed using the method of equivalent linearization to account for material non-linearity.

  • PDF

A comparative study for bending of cross-ply laminated plates resting on elastic foundations

  • Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1569-1582
    • /
    • 2015
  • Two hyperbolic displacement models are used for the bending response of simply-supported orthotropic laminated composite plates resting on two-parameter elastic foundations under mechanical loading. The models contain hyperbolic expressions to account for the parabolic distributions of transverse shear stresses and to satisfy the zero shear-stress conditions at the top and bottom surfaces of the plates. The present theory takes into account not only the transverse shear strains, but also their parabolic variation across the plate thickness and requires no shear correction coefficients in computing the shear stresses. The governing equations are derived and their closed-form solutions are obtained. The accuracy of the models presented is demonstrated by comparing the results obtained with solutions of other theories models given in the literature. It is found that the theories proposed can predict the bending analysis of cross-ply laminated composite plates resting on elastic foundations rather accurately. The effects of Winkler and Pasternak foundation parameters, transverse shear deformations, plate aspect ratio, and side-to-thickness ratio on deflections and stresses are investigated.

Natural Frequencies of Laminated Composite Plates Attached Point Mass Under an Uniform Axial-Loading (등분포 축하중을 받고 첨가질량이 재하된 적충복합판의 고유진동수)

  • Park, Jae-Sean;Hong, Chang-Woo;Lee, Jung-Ho;Lee, Joo-Hyung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.235-243
    • /
    • 1999
  • Vibration analysis for some of simple supported antisymmetric composite laminated plate loaded uniformly distributed axial force and attached mass was carried out. Because it is complicated to analysis this type of plate by theory of antisymmetric laminate, possibility for application of theory of special orthotropic laminate was studied, and natural frequency of laminated plate attached mass was calculated. Stiffness $B_{16}$, $B_{26}$, $D_{16}$, $D_{26}$ for this type of antisymmetric laminated plate converge on zero as the number of ply increases and it is possible to use classical theory by reason that considered plate has quasi-homogeneity without relevance to variation of angle. Difference between results by theory of antisymmetric and special orthotropic laminate is 0.36~1.96%, therefore it is convenient to analyze this by use of theory of special orthotropic laminate. When composite laminated plate with attached mass is analyzed range that was able to neglect self-weight of plate was proposed.

  • PDF

Natural Frequencies of Laminated Composite Plates with Attached Mass Under an Uniform Axial-Loading (등분포 축하중을 받고 첨가질량이 재하된 적층복합판의 고유진동수에 관한 연구)

  • Hong, Chang-Woo;Kim, Kyeong-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.181-190
    • /
    • 2000
  • Vibration analysis for some of simple supported antisymmetric composite laminated plate loaded uniform axial-loading and attached mass was carried out. Because it is complicated to analyze this type of plate by theory of antisymmetric laminate possibility for application of theory of special orthotropic laminate was studied, and natural frequency of laminated plate attached mass was calculated. Stiffness $B_{16}$, $B_{26}$, $D_{16}$, $D_{26}$ for this type of antisymmetric laminated plate converge on zero as the number of ply increases and it is possible to use classical theory by reason that considered plate has quasi-homogeneity without relevance to variation of angle. Difference between results by theory of antisymmetric and special orthotropic laminate is 0.36~1.96%, therefore it is convenient to analyze this by use of theory of special orthotropic laminate. When composite laminated plate with attached mass is analyzed range that Was able to neglect self-weight of plate was proposed.

  • PDF

Numerical experiments on the determination of stress concentration factors in orthotropic perforated plates subjected to in - plane loading

  • Bambill, D.V.;Rossit, C.A.;Susca, A.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.549-561
    • /
    • 2009
  • As it is known, laminated composite materials are increasingly used in many technological applications, and in some instance, cutouts must be made into laminated panels for practical reasons, changing the stress distribution. The present study deals with the determination of the stress concentration factor that holes of square shape cause in an orthotropic plate subjected to distributed in - plane loading. Square holes of rounded corners in a rectangular plate are considered, and the effect of different combinations of axial and tangential forces applied to its middle plane at the external edges, is studied. The mutually perpendicular axes, which define the principal axes of orthotropy, are assumed in many different directions referred to the sides of the plate. Numerical experiments by means of a finite element code is performed, evaluating the influence of the fiber orientation with respect to the edges of the plate and the characteristics of the orthotropic materials since such structures do not exhibit easily predictable behavior.

A Simple Method of Obtaining Exact Values of the Natural Frequencies of Vibration for Some Composite Laminated Structures with Various Boundary Condition (다양한 경계조건을 갖는 복합적층판의 간편한 고유진동수 해석방법)

  • Won, Chi Moon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Numerical method for eigenvalue problems are also very much involved in seeking such a solution. A method of calculating the natural frequency corresponding to the first mode of vibration of beam and tower structures with irregular cross-sections was developed and reported by Kim in 1974. Recently, this method was extended to two dimensional problems including composite laminates, and has been applied to composite plates with shear deformation effects. In this paper, application of this method to the specially orthotropic laminated plates with various boundary condition is accomplished and the result of analysis is presented.

An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions

  • Adim, Belkacem;Daouadji, Tahar Hassaine;Rabia, Benferhat;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.63-82
    • /
    • 2016
  • In this study, the bending and dynamic behaviors of laminated composite plates is examined by using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates under various boundary conditions. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. Numerical results for the bending and dynamic behaviors of antisymmetric cross-ply laminated plate under various boundary conditions are presented. The validity of the present solution is demonstrated by comparison with solutions available in the literature. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.