References
- Abdelhak, Z., L. Hadji, Hassaine Daouadji T. and Adda bedia E.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Mater. Res., 4(1), 31-44. https://doi.org/10.12989/amr.2015.4.1.31
- Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
- Benferhat, R., Hassaine Daouadji, T. and M. Said Mansour (2014), "A higher order shear deformation model for bending analysis of functionally graded plates", Transactions of the Indian Institute of Metals, 68(1), 7-16. https://doi.org/10.1007/s12666-014-0428-1
- Bouazza, M., K. Amara, M. Zidour, A. Tounsi and El A. Adda Bedia (2015), "Postbuckling analysis of functionally graded beams using hyperbolic shear deformation theory", Rev. Inform. Eng. Appl., 2(1), 1-14. https://doi.org/10.1186/s40535-014-0004-0
- Bouazza, M., K. Amara, M. Zidour, A. Tounsi and El A. Adda Bedia (2015), "Postbuckling analysis of nanobeams using trigonometric Shear deformation theory", Appl. Sci. Reports, 10(2), 112-121.
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Archiv. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Carrera, E. and Miglioretti, F. (2012), "Selection of appropriate multilayered plate theories by using a genetic like algorithm", Compos. Struct., 94(3), 1175-1186 https://doi.org/10.1016/j.compstruct.2011.10.013
- Hassaine Daouadji, T., Tounsi, A. and Adda bedia, E.A. (2013), "Analytical solution for bending analysis of functionally graded plates", Scientia Iranica, Trans. B: Mech. Eng., 20(3), 516-523.
- Hebali, H., A. Tounsi, S. Houari, A. Bessaim and E.A. Adda Bedia (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Karama, M., K.S. Afaq, and S. Mistou (2003), "Mechanical behavior of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 15251546.
- Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proceeding of the IMechE, vol. 223 (Part L: Journal of Materials: Design and Applications).
- Mahi, A., E. Adda Bedia and A. Tounsi (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plate", Appl. Math. Model., Appl. Math. Model., 39(9), 2489-2508.
- Mantari, J.L., A.S. Oktem and C. Guedes Soares (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solid. Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
- Meiche, N.E., Tounsi, A., Ziane, N., Mechab, I. and Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
- Nedri, K., N. El Meiche and A. Tounsi (2014), "Free vibration analysis of laminated composite plates resting on elastic foundation by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 629-640. https://doi.org/10.1007/s11029-013-9379-6
- Noor, A.K. (1975), "Stability of multilayered composite plate", Fibre Sci. Technol., 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6
- Noor, K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868
- Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., ASME, 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1986), "A refined shear deformation theory for the analysis of laminated plates", NASA Report3955.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., Trans., ASME, 12(2), 69-77.
- Ren, J.G. (1986), "A new theory of laminated plate", Compos. Sci. Technol., 26(3), 225-239. https://doi.org/10.1016/0266-3538(86)90087-4
- Ren, J.G. (1990), "Bending, vibration and buckling of laminated plates", Ed., Cheremisinoff, N.P., Handbook of ceramics and composites, 1, 413-450.
- Shimpi, R.P. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43(22), 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
- Shimpi, R.P. and Patel, H.G. (2006), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296(4-5), 979-999. https://doi.org/10.1016/j.jsv.2006.03.030
- Tlidji, Y., Hassaine Daouadji, T., Hadji, L., Tounsi, A. and Adda bedia, E.A. (2014), "Elasticity solution for bending response of functionally graded sandwich plates under thermo mechanical loading", J. Therm. Stress, 37(7), 852-869. https://doi.org/10.1080/01495739.2014.912917
- Tounsi, A., Sid Ahmed, H., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aero. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
Cited by
- Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2016, https://doi.org/10.12989/amr.2018.7.2.119
- Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2016, https://doi.org/10.12989/amr.2018.7.2.119
- Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate vol.16, pp.5, 2016, https://doi.org/10.12989/eas.2019.16.5.601
- Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
- Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations vol.72, pp.1, 2016, https://doi.org/10.12989/sem.2019.72.1.061
- Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study vol.72, pp.4, 2019, https://doi.org/10.12989/sem.2019.72.4.409
- Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study vol.72, pp.4, 2019, https://doi.org/10.12989/sem.2019.72.4.409
- Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive vol.9, pp.2, 2016, https://doi.org/10.12989/amr.2020.9.2.133
- Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM vol.75, pp.5, 2020, https://doi.org/10.12989/sem.2020.75.5.633
- Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate vol.9, pp.5, 2016, https://doi.org/10.12989/csm.2020.9.5.473
- Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2016, https://doi.org/10.12989/csm.2020.9.6.499
- Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2016, https://doi.org/10.12989/sem.2021.77.2.217
- Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2016, https://doi.org/10.12989/acd.2021.6.2.117
- New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2016, https://doi.org/10.12989/amr.2021.10.3.169