• 제목/요약/키워드: orthotropic elastic material

검색결과 86건 처리시간 0.026초

직교 이방성 재료 파형 암거의 탄성 화굴 거동 특성 (Elastic Buckling Characteristics of Corrugated Culverts of Orthotropic Material)

  • 김태연;한택희;한금호;강진욱;이명섭;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.111-118
    • /
    • 2006
  • The elastic buckling strength of a corrugated culvert made of orthotropic material such as FRP was evaluated. The height and length of a corrugated wave and the thickness of the culvert were considered as factors affecting the buckling strength of the culvert. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting on the buckling strength of the used orthotropic material. Buckling strengths of various corrugated culvert models with different shapes and stiffness ratio were evaluated by FE analyses and a formula to estimate the elastic buckling strength was suggested from the regression with FE analysis results. Analysis results show that a corrugated culvert has superior buckling strength to a general flat pipe and the suggested formula estimates accurate buckling strength of the corrugated culverts made of orthotropic material.

  • PDF

Dynamical behavior of the orthotropic elastic material using an analytical solution

  • Balubaid, Mohammed;Abdo, H.;Ghandourah, E.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.331-339
    • /
    • 2021
  • In this work, an analytical solution is provided for the dynamical response of an orthotropic non-homogeneous elastic material. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity. The analytical performances for the elastodynamic equations has been solved regarding displacements. The influences of the rotation, the magnetic field, the non-homogeneity based radial displacement and the corresponding stresses in an orthotropic material are investigated. The variations of the stresses, the displacement, and the perturbation magnetic field have been illustrated. The comparisons is performed using the previous solutions in the magnetic field absence, the non-homogeneity and the rotation.

An analytical solution for equations and the dynamical behavior of the orthotropic elastic material

  • Ramady, Ahmed;Atia, H.A.;Mahmoud, S.R.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.315-321
    • /
    • 2021
  • In this article, an analytical solution of the dynamical behavior in an orthotropic non-homogeneity elastic material using for elastodynamics equations is investigated. The effects of the magnetic field, the initial stress, and the non-homogeneity on the radial displacement and the corresponding stresses in an orthotropic material are investigated. The analytical solution for the elastodynamic equations has solved regarding displacements. The variation of the stresses, the displacement, and the perturbation magnetic field have shown graphically. Comparisons are made with the previous results in the absence of the magnetic field, the initial stress, and the non-homogeneity. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity.

경계요소법에 의한 다결정 직교 이방성 재료의 유효 재료 상수의 계산 (Calculation of Effective Material Property for Multi-Grain Orthotropic Material by BEM)

  • 김동은;이상훈;정일중;이석순
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.713-719
    • /
    • 2008
  • Most of the MEMS parts are made of multi-grain silicon wafer, which is the orthotropic material and its material direction is arbitrary. The reliability of the parts must be guaranteed in order to use for the commercial usage. The need of the structural analysis of its parts emerges an important factor. The material properties of the MEMS parts are calculated by the numerical method in order to reduce a material test. In this study, the effective elastic modulus and its Poisson's ratio are calculated by the boundary element method(BEM) and are compared with the results by the finite element method(FEM).

파랑 및 조류력에 의한 탄섬유강 말뚝에 부착된 폐타이어의 구조거동 (Structural Behavior of Worn Tire Attached to Carbon Fiber Steel Pile by Wave and Current Forces)

  • 홍남식;이상화
    • 한국해양공학회지
    • /
    • 제18권3호
    • /
    • pp.13-19
    • /
    • 2004
  • The structural behavior of a worn tire, attached to carbon fiber steel pile by current and wave forces, has been investigated through the numerical method. The finite element model has been developed, by considering that the composite material of rubber and cord is orthotropic, the rubber is isotropic, and that all the material behaves as linear elastic. The pressure distribution by wave and current, around the worn tire, has been estimated through the adjustment for the concept of flow separation. Also, the structural behavior of the worn tire has been examined, by comparing the situation wherein the space between the pile is reinforced, and tire as elastic and isotropic material, with the one left empty. Through this comparison, it is determined that the space between pile and tire has to be filled with elastic and isotropic material, in order to avoid the failure by wave and current action.

Identification of isotropic and orthotropic constitutive parameters by FEA-free energy-based inverse characterization method

  • Shang, Shen;Yun, Gun Jin;Kunchum, Shilpa;Carletta, Joan
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.471-494
    • /
    • 2013
  • In this paper, identification of isotropic and orthotropic linear elastic material constitutive parameters has been demonstrated by a FEA-free energy-based inverse analysis method. An important feature of the proposed method is that it requires no finite element (FE) simulation of the tested material. Full-field displacements calculated using digital image correlation (DIC) are used to compute DIC stress fields enforcing the equilibrium condition and DIC strain fields using interpolation functions. Boundary tractions and displacements are implicitly recast into an objective function that measures the energy residual of external work and internal elastic strain energy. The energy conservation principle states that the residual should be zero, and so minimizing this objective function inversely identifies the constitutive parameters. Synthetic data from simulated testing of isotropic materials and orthotropic composite materials under 2D plane stress conditions are used for verification of the proposed method. When identifying the constitutive parameters, it is beneficial to apply loadings in multiple directions, and in ways that create non-uniform stress distributions. The sensitivity of the parameter identification method to noise in both the measured full-field DIC displacements and loadings has been investigated.

직교 이방성 복합재료로 구성된 파형 관로의 탄성좌굴 특성 (Elastic Buckling Characteristics of Corrugated Pipe Made of Orthotropic Composite Material)

  • 한택희;김태연;한금호;강영종
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.77-84
    • /
    • 2007
  • 본 연구에서는 이방성 재료로 구성된 파형 관로의 좌굴 거동을 분석하였으며, 좌굴거동에 영향을 미치는 변수로서 파형의 높이와 길이, 암거의 직경과 두께가 고려되었다. 또한 이방성 재료의 특성을 고려하여, 길이방향의 강성과 원주방향의 강성도 함께 좌굴거동에 영향을 미치는 인자로서 고려되었다. 다양한 형상의 파형 관로에 대해 유한요소해석을 수행하여 매개변수연구를 하였으며, 유한요소해석 결과를 바탕으로 이방성 재료로 구성된 파형 관로의 좌굴강도를 추정할 수 있는 간략식을 제안하였다. 해석결과, 파형 관로는 일반적인 평탄한 관로에 비해 우수한 좌굴강도를 보였으며, 제안식 또한 유한요소해석 결과에 근접하는 좌굴강도를 보여주었다.

Effects of elastic medium on buckling of microtubules due to bending and torsion

  • Taj, Muhammad;Hussain, Muzamal;Afsar, Muhammad A.;Safeer, Muhammad;Ahmad, Manzoor;Naeem, Muhammad N.;Badshah, Noor;Khan, Arshad;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.491-501
    • /
    • 2020
  • Microtubules buckle under bending and torsion and this property has been studied for free microtubules before using orthotropic elastic shell model. But as microtubules are embedded in other elastic filaments and it is experimentally showed that these elastic filaments affect the critical buckling moment and critical buckling torque of the microtubules. To prove that, we developed orthotropic Winkler like model and demonstrated that the critical buckling moment and critical buckling torque of the microtubules are orders of higher magnitude than those found for free microtubules. Our results show that Critical buckling moment is about 6.04 nNnm for which the corresponding curvature is about θ = 1.33 rad /㎛ for embedded MTs, and critical buckling torque is 0.9 nNnm for the angle of 1.33 rad/㎛. Our results well proved the experimental findings.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

리브로 보강된 GFRP 관로의 탄성 좌굴거동 특성 (Elastic Behavior Characteristics of GFRP Pipes Reinforced Ribs)

  • 한택희;서주형;염응준;강영종
    • 한국강구조학회 논문집
    • /
    • 제18권6호
    • /
    • pp.737-746
    • /
    • 2006
  • 본 연구에서는 리브로 보강된 GFRP(Glass Fiber Reinforced Plastic) 관로의 탄성 좌굴 강도를 산정하였다. 보강된 리브의 두께, 높이, 배치 간격은 관로의 좌굴 강도에 영향을 미치는 주요 인자이다. 또한, GFRP 재료는 이방성 재료이므로, 재료의 방향별 강성 또한 관로의 좌굴강도에 영형을 미치는 인자로서 고려되어야할 부분이다. 이러한 매개변수를 적용하여, 직교 이방성 재료로 구성된 리브 보강 관로의 좌굴 강도를 유한요소 해석을 이용하여 매개변수를 수행하고, 회귀분석을 통하여 좌굴 강도 산정을 위한 간략식을 제시하였다.