DOI QR코드

DOI QR Code

Dynamical behavior of the orthotropic elastic material using an analytical solution

  • Balubaid, Mohammed (Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Abdo, H. (Faculty of Science, Mathematics Dept, Computer Science Branch, South Valley University) ;
  • Ghandourah, E. (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
  • Received : 2020.08.15
  • Accepted : 2021.05.13
  • Published : 2021.05.25

Abstract

In this work, an analytical solution is provided for the dynamical response of an orthotropic non-homogeneous elastic material. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity. The analytical performances for the elastodynamic equations has been solved regarding displacements. The influences of the rotation, the magnetic field, the non-homogeneity based radial displacement and the corresponding stresses in an orthotropic material are investigated. The variations of the stresses, the displacement, and the perturbation magnetic field have been illustrated. The comparisons is performed using the previous solutions in the magnetic field absence, the non-homogeneity and the rotation.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant (G:674-135-1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

References

  1. Abd-Alla, A.M. and Mahmoud, S.R. (2010), "Magneto-thermoelastic problem in rotating non-homogeneous orthotropic hollow cylindrical under the hyperbolic heat conduction model", Meccanica, 45(4), 451-462. https://doi.org/10.1007/s11012-009-9261-8.
  2. Abd-Alla, A.M. and Mahmoud, S.R. (2012), "Analytical solution of wave propagation in non-homogeneous orthotropic rotating elastic media", J. Mech. Sci. Technol., 26(3), 917-926. https://doi.org/10.1007/s12206-011-1241-y.
  3. Abd-Alla, A.M. and Mahmoud, S.R. (2013), "On problem of radial vibrations in non-homogeneity isotropic cylinder under influence of initial stress and magnetic field", J. Vib. Control, 19(9), 1283-1293. https://doi.org/10.1177%2F1077546312441043. https://doi.org/10.1177%2F1077546312441043
  4. Abd-Alla, A.M., Mahmoud, S.R., Abo-Dahab, S.M. and Helmi, M.I.R. (2011a), "Propagation of S-wave in a non-homogeneous anisotropic incompressible and initially stressed medium under influence of gravity field", Appl. Math. Comput., 217(9), 4321-4332. https://doi.org/10.1016/j.amc.2010.10.029.
  5. Abd-Alla, A.M., Mahmoud, S.R., AL-Shehri, N.A. (2011b), "Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material", Appl. Math. Comput., 217(22), 8914-8922. https://doi.org/10.1016/j.amc.2011.03.077.
  6. Abd-Alla, A.M., Yahya, G.A. and Mahmoud, S.R. (2013), "Radial vibrations in a non-homogeneous orthotropic elastic hollow sphere subjected to rotation", J. Comput. Theor. Nanosci., 10(2), 455-463. https://doi.org/10.1166/jctn.2013.2718.
  7. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  8. Adda Bedia, W., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  9. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  10. Ahmed, S.M., Zhou, B., Wang, Y., Yang, H., Zheng, Y.P. and ShiBin, X. (2020), "Preparation, Characterization of activated carbon fiber (ACF) from loofah and its application in composite vertical flow constructed wetlands for Tetracycline removal from water", Membr. Water Treat., 11(4), 313-321. http://doi.org/10.12989/mwt.2020.11.4.313.
  11. Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6) 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
  12. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. http://doi.org/10.12989/scs.2011.11.5.403.
  13. Al-Basyouni, K.S., Dakhel, B., Ghandourah, E. and Algarni, A. (2020), "An analytical solution for the problem of stresses in magneto-piezoelectric thermoelastic material under the influence of rotation", Phys. Mesomech., 23(4), 362-368. https://doi.org/10.1134/S1029959920040116.
  14. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
  15. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W. and Tounsi, A. (2020a), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput. https://doi.org/10.1007/s00366-020-01200-x
  16. Al-Furjan, M.S.H., Habibi, M., Rahimi, A., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020b), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
  17. Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020c), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput. https://doi.org/10.1007/s00366-020-01130-8.
  18. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020d), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  19. Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021a), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  20. Al-Furjan, M.S.H., hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021b), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  21. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  22. Alwabli, A.S., Kaci, A., Bellifa, H., Bousahla, A.A., Tounsi, A., Alzahrani, D.A., Abulfaraj, A.A., Bourada, F., Benrahou, K.G., Tounsi, A., Mahmoud, S.R. and Hussain, M. (2021), "The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory", Adv. Nano Res., 10(1), 15-24. http://doi.org/10.12989/anr.2021.10.1.015.
  23. Argatov, I.I. (2005), "Approximate solution of the axisymmetric contact problem for an elastic sphere", J. Appl. Math. Mech., 69(2), 275-286. https://doi.org/10.1016/j.jappmathmech.2005.03.014.
  24. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y
  25. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  26. Avcar, M. (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Physica Polonica A, 130(1), 375-378. https://doi.org/10.12693/APhysPolA.130.375.
  27. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  28. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
  29. Azmi, M., Kolahchi, R. and Bidgoli, M.R. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concrete Construct., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051
  30. Bahrami, A., Ilkhani, M.R. and Bahrami, M.N. (2013), "Wave propagation technique for free vibration analysis of annular circular and sectorial membranes", J. Vib. Control, 21(9), 1866-1872. https://doi.org/10.1177%2F1077546313505123. https://doi.org/10.1177%2F1077546313505123
  31. Barati, M.R. (2019), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermomechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
  32. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. http://doi.org/10.12989/cac.2020.26.5.439.
  33. Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Al-Zahrani, M.M. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst., 27(4), 719-728. http://doi.org/10.12989/sss.2021.27.4.719
  34. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  35. Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Tamer A. Sebaey, A.E. and Zain, A.M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., 37(2), 253-258. https://doi.org/10.12989/scs.2020.37.2.253.
  36. Civalek, O. (2009), "Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method", Appl. Math. Model., 33(10), 3825-3835. https://doi.org/10.1016/j.apm.2008.12.019.
  37. Civalek, O. and Acar, M. H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Pres. Ves. Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
  38. Dehsaraji, M. L., Arefi, M., & Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., 34(5), 657-670. https://doi.org/10.12989/scs.2020.34.5.657.
  39. Dutta, G., Panda, S.K., Mahapatra, T.R. and Singh, V.K. (2016), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., 3(3), 2573-2592. https://doi.org/10.1007/s40819-016-0256-6.
  40. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. http://doi.org/10.12989/scs.2021.38.5.533
  41. Hirane, H., Belarbi, MO., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.
  42. Huang, C.S. and Ho, K.H. (2004), "An analytical solution for vibrations of a polarly orthotropic Mindlin sectorial plate with simply supported radial edges", J. Sound Vib., 273(1-2), 277-294. https://doi.org/10.1016/S0022-460X(03)00501-7.
  43. Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  44. Islam, Md.S., Ahmed, Md.K., Proshad, R. and Ahmed, S. (2017), "Assessment of toxic metals in vegetables with the health implications in Bangladesh", Adv. Environ. Res., 6(4), 241-254. http://doi.org/10.12989/aer.2017.6.4.241.
  45. Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-427. https://doi.org/10.12989/scs.2019.31.4.419.
  46. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  47. Kakar, R. and Kakar, S. (2014), "Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space", Geomech. Eng., 7(1), 1-36. http://doi.org/10.12989/gae.2014.7.1.001.
  48. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  49. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41(11), 1-17. https://doi.org/10.1007/s40430-019-1996-0.
  50. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  51. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/SSS.2017.20.5.595.
  52. Khadimallah, M.A. and Hussain, M. (2020), "Effect of power law index for vibration of armchair and zigzag single walled carbon nanotubes", Steel Compos. Struct., 37(5), 621-632. https://doi.org/10.12989/scs.2020.37.5.621
  53. Kumar, A., Stickland, A.D. and Scales, P.J. (2012), "Viscoelasticity of coagulated alumina suspensions", Korea-Australia Rheol. J., 24(2), 105-111. https://doi.org/10.1007/s13367-012-0012-3.
  54. Lago, T.G.S., Ismail, K.A.R., Nobrega, C.R.E.S. and Moura, L.F.M. (2020), "Effects of the electronic expansion valve and variable velocity compressor on the performance of a refrigeration system", Adv. Energy Res., 7(1), 1-19. http://doi.org/10.12989/eri.2020.7.1.001.
  55. Lakshmipathi, J. and Vasudevan, R. (2019), "Dynamic characterization of a CNT reinforced hybrid uniform and non-uniform composite plates", Steel Compos. Struct., 30(1), 31-46. https://doi.org/10.12989/scs.2019.30.1.031.
  56. Lata, P. and Kaur, H. (2020), "Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation", Geomech. Eng., 21(5), 461-469. http://doi.org/10.12989/gae.2020.21.5.461.
  57. Lata, P. and Kaur, I. (2019), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. http://doi.org/10.12989/gae.2019.19.1.029
  58. Lata, P. and Zakhmi, H. (2019), "Fractional order generalized thermoelastic study in orthotropic medium of type GN-III", Geomech. Eng., 19(4), 295-305. http://doi.org/10.12989/gae.2019.19.4.295.
  59. Mahmoud, S.R. (2013), "On problem of Shear waves in a magneto-elastic half-space of initially stressed a non-homogeneous anisotropic material under influence of rotation", Int. J. Mech. Sci., 77(12), 269-276. https://doi.org/10.1016/j.ijmecsci.2013.10.004.
  60. Mahmoud, S.R. (2016), "An analytical solution for effect of initial stress, rotation, magnetic field and a periodic loading in thermo-viscoelastic homogeneity medium with a spherical cavity", Mech. Adv. Mater. Struct., 23(1), 1-7. https://doi.org/10.1080/15376494.2014.884659.
  61. Mahmoud, S.R., Abd-Alla, A.M. and AL-Shehri, N.A. (2011a), "Effect of the rotation on plane vibrations in a transversely isotropic infinite hollow cylinder", Int. J. Modern Phys. B, 25(20), 3513-3528. https://doi.org/10.1142/S0217979211100928.
  62. Mahmoud, S.R., Abd-Alla, A.M. and Matooka, B.R. (2011b), "Effect of the rotation on wave motion through cylindrical bore in a micropolar porous cubic crystal", Int. J. Modern Phys. B, 25(20), 2713-2728. https://doi.org/10.1142/S0217979211101739.
  63. Mahmoud, S.R., Al-Solami, H.M., Alkenani, N., Alhebshi, A.M., Alwabli, A.S. and Bahieldin, A. (2020), "A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications", Membr. Water Treat., 11(6), 399-406. http://doi.org/10.12989/mwt.2020.11.6.399.
  64. Mehar, K., Mishra, P.K. and Panda, S.K. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. http://doi.org/10.1080/15376494.2020.1725193.
  65. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  66. Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. http://doi.org/10.12989/gae.2020.22.4.361.
  67. Mishra, K., Panda, S.K., Kumar, V. and Dewangan, H.C. (2020), "Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator", Smart Struct. Syst., 26(3), 391-401. https://doi.org/10.12989/SSS.2020.26.3.391.
  68. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidiscip. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
  69. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civ. Eng. Architect., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  70. Perera, K.S., Prasadini, K.W. and Vidanapathirana, K.P. (2020), "An ionic liquid incorporated gel polymer electrolyte for double layer capacitors", Adv. Energy Res., 7(1), 21-34. http://doi.org/10.12989/eri.2020.7.1.021.
  71. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. http://doi.org/10.12989/gae.2020.22.1.065.
  72. Ramady, A., Dakhel, B., Balubaid, M. and Mahmoud, S.R. (2020), "A mathematical approach for the effect of the rotation on thermal stresses in the piezo-electric homogeneous material", Comput. Concrete, 25(5), 471-478. https://doi.org/10.12989/cac.2020.25.5.471.
  73. Ramady, A., Mahmoud, S.R. and Atia, H.A. (2020), "A theoretical approach in 2d-space with applications of the periodic wave solutions in the elastic body", Membr. Water Treat., 11(4), 295-302. https://doi.org/10.12989/mwt.2020.11.4.295.
  74. Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695.
  75. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. http://doi.org/10.12989/sss.2020.26.3.361
  76. Shinde, D., Katariya, P.V., Mehar, K., Khan, M.R., Panda, S.K. and Pandey, H.K. (2018), "Experimental training of shape memory alloy fibres under combined thermomechanical loading", Struct. Eng. Mech., 68(5), 519-526. https://doi.org/10.12989/sem.2018.68.5.519.
  77. Sofiyev, A.H. and Karaca, Z. (2009), "The vibration and buckling of laminated non-homogeneous orthotropic conical shells subjected to external pressure", Eur. J. Mech. A Solids, 28, 317-328. https://doi.org/10.1016/j.euromechsol.2008.06.002.
  78. Stavsky, Y. and Greenberg, J.B. (2003), "Radial vibrations of orthotropic laminated hollow spheres", J. Acoust. Soc. Am., 113(2), 847-851. https://doi.org/10.1121/1.1536625.
  79. Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", IOP Conf. Ser. Mater. Sci. Eng., 178(1), 012026. https://doi.org/10.1088/1757-899x/178/1/012026.
  80. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  81. Theotokoglou, E.E. and Stampouloglou, I.H. (2008), "The radially non-homogeneous axisymmetric problem", Int. J. Solids Struct., 45, 6535-6552. https://doi.org/10.1016/j.ijsolstr.2008.08.011.
  82. Timesli, A. (2020a), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2(3), 1-12. https://doi.org/10.1007/s42452-020-2182-9.
  83. Timesli, A. (2020b), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://doi.org/10.12989/cac.2020.26.1.053
  84. Timesli, A. (2020c), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. http://doi.org/10.12989/anr.2020.9.2.069
  85. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  86. Towfighi, S. and Kundu, T. (2003), "Elastic wave propagation in anisotropic spherical curved plates", Int. J. Solids Struct., 40(20), 5495-5510. https://doi.org/10.1016/S0020-7683(03)00278-6.
  87. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. http://doi.org/10.12989/cac.2020.26.2.107.
  88. Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
  89. Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.