• 제목/요약/키워드: orthogonal decomposition

검색결과 218건 처리시간 0.026초

EVD기법을 이용한 QO-STBC의 간섭 제거 (Interference Cancellation for QO-STBC with EVD)

  • 김동진
    • 전자공학회논문지
    • /
    • 제53권6호
    • /
    • pp.46-52
    • /
    • 2016
  • 3개 이상의 송신안테나를 사용하고, 개루프 상황 하에서 준직교 시공간 블록 코드(Quasi-Orthogonal STBC, QO-STBC)는 완전한 전송률 및 최대의 다중화 이득에 근접한 효과를 얻을 수 있는 코드로 기존에 제안되어 왔다. 그러나, 기존의 QO-STBC는 검출행렬의 간섭성분으로 인한 성능 열화 및 높은 복호 복잡도를 요구하는 단점이 있다. 이에 따라 최근에 이러한 QO-STBC에 특정 로테이션 행렬을 곱해주는 간단한 복호를 통해 복호 복잡도를 줄이면서 간섭 성분을 제거하는 방법이 제안되었고, 본 논문에서는 이를 좀 더 일반화하여 EVD(Eigenvalue Decompostion) 기법을 이용하여 간섭성분을 제거하는 방법을 제안한다.

CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A

  • Jang, Chang-Rim;Lee, Tae-Hoon;Park, Keun
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1705-1723
    • /
    • 2008
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <, > and has an orthogonal decomposition $n\;=z\;{\oplus}v$ for its center z and the orthogonal complement v of z. Then Each element z of z defines a skew symmetric linear map $J_z\;:\;v\;{\longrightarrow}\;v$ given by <$J_zx$, y> = for all x, $y\;{\in}\;v$. In this paper we characterize Jacobi fields and calculate all conjugate points of a simply connected 2-step nilpotent Lie group N with its Lie algebra n satisfying $J^2_z$ = A for all $z\;{\in}\;z$, where S is a positive definite symmetric operator on z and A is a negative definite symmetric operator on v.

Channel Assignment, Link Scheduling, Routing, and Rate Control for Multi-Channel Wireless Mesh Networks with Directional Antennas

  • Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • 제18권6호
    • /
    • pp.884-891
    • /
    • 2016
  • The wireless mesh network (WMN) has attracted significant interests as a broadband wireless network to provide ubiquitous wireless access for broadband services. Especially with incorporating multiple orthogonal channels and multiple directional antennas into the WMN, each node can communicate with its neighbor nodes simultaneously without interference between them. However, as we allow more freedom, we need a more sophisticated algorithm to fully utilize it and developing such an algorithm is not easy in general. In this paper, we study a joint channel assignment, link scheduling, routing, and rate control problem for the WMN with multiple orthogonal channels and multiple directional antennas. This problem is inherently hard to solve, since the problem is formulated as a mixed integer nonlinear problem (MINLP). However, despite of its inherent difficulty, we develop an algorithm to solve the problem by using the generalized Benders decomposition approach [2]. The simulation results show the proposed algorithm provides the optimal solution to maximize the network utility, which is defined as the sum of utilities of all sessions.

Snapping shrimp noise detection and mitigation for underwater acoustic orthogonal frequency division multiple communication using multilayer frequency

  • Ahn, Jongmin;Lee, Hojun;Kim, Yongcheol;Chung, Jeahak
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.258-269
    • /
    • 2020
  • This paper proposes Snapping Shrimp Noise (SSN) detection and corrupted Orthogonal Frequency Division Multiplexing (OFDM) reconstruction methods to increase Bit Error Rate (BER) performance when OFDM transmitted signal is corrupted by impulsive SSNs in underwater acoustic communications. The proposed detection method utilizes multilayer wavelet packet decomposition for detecting impulsive and irregularly concentrated and SSN energy in specific frequency bands of SSN, and the proposed reconstruction scheme uses iterative decision directed-subcarrier reconstruction to recover corrupted OFDM signals using multiple carrier characteristics. Computer simulations were executed to show receiver operating characteristics curve for the detection performance and BER for the reconstruction. The practical ocean experiment of SAVEX 15 demonstrated that the proposed method exhibits a better detection performance compared with conventional detection method and improves BER by 250% and 1230% for uncoded and coded data, respectively, compared with the conventional reconstruction scheme.

A DECOMPOSITION THEOREM FOR UTUMI AND DUAL-UTUMI MODULES

  • Ibrahim, Yasser;Yousif, Mohamed
    • 대한수학회보
    • /
    • 제58권6호
    • /
    • pp.1563-1567
    • /
    • 2021
  • We show that if M is a Utumi module, in particular if M is quasi-continuous, then M = Q ⊕ K, where Q is quasi-injective that is both a square-full as well as a dual-square-full module, K is a square-free module, and Q & K are orthogonal. Dually, we also show that if M is a dual-Utumi module whose local summands are summands, in particular if M is quasi-discrete, then M = P ⊕ K where P is quasi-projective that is both a square-full as well as a dual-square-full module, K is a dual-square-free module, and P & K are factor-orthogonal.

Projection spectral analysis: A unified approach to PCA and ICA with incremental learning

  • Kang, Hoon;Lee, Hyun Su
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.634-642
    • /
    • 2018
  • Projection spectral analysis is investigated and refined in this paper, in order to unify principal component analysis and independent component analysis. Singular value decomposition and spectral theorems are applied to nonsymmetric correlation or covariance matrices with multiplicities or singularities, where projections and nilpotents are obtained. Therefore, the suggested approach not only utilizes a sum-product of orthogonal projection operators and real distinct eigenvalues for squared singular values, but also reduces the dimension of correlation or covariance if there are multiple zero eigenvalues. Moreover, incremental learning strategies of projection spectral analysis are also suggested to improve the performance.

Reconstruction of missing response data for identification of higher modes

  • Shrikhande, Manish
    • Earthquakes and Structures
    • /
    • 제2권4호
    • /
    • pp.323-336
    • /
    • 2011
  • The problem of reconstruction of complete building response from a limited number of response measurements is considered. The response at the intermediate degrees of freedom is reconstructed by using piecewise cubic Hermite polynomial interpolation in time domain. The piecewise cubic Hermite polynomial interpolation is preferred over the spline interpolation due to its trend preserving character. It has been shown that factorization of response data in variable separable form via singular value decomposition can be used to derive the complete set of normal modes of the structural system. The time domain principal components can be used to derive empirical transfer functions from which the natural frequencies of the structural system can be identified by peak-picking technique. A reduced-rank approximation for the system flexibility matrix can be readily constructed from the identified mass-orthonormal mode shapes and natural frequencies.

Least squares decoding in binomial frequency division multiplexing

  • Myungsup Kim;Jiwon Jung;Ki-Man Kim
    • ETRI Journal
    • /
    • 제45권2호
    • /
    • pp.277-290
    • /
    • 2023
  • This paper proposes a method that can reduce the complexity of a system matrix by analyzing the characteristics of a pseudoinverse matrix to receive a binomial frequency division multiplexing (BFDM) signal and decode it using the least squares (LS) method. The system matrix of BFDM can be expressed as a band matrix, and as this matrix contains many zeros, its amount of calculation when generating a transmission signal is quite small. The LS solution can be obtained by multiplying the received signal by the pseudoinverse matrix of the system matrix. The singular value decomposition of the system matrix indicates that the pseudoinverse matrix is a band matrix. The signal-to-interference ratio is obtained from their eigenvalues. Meanwhile, entries that do not contribute to signal generation are erased to enhance calculation efficiency. We decode the received signal using the pseudoinverse matrix and the removed pseudoinverse matrix to obtain the bit error rate performance and to analyze the difference.

Constrained $L_1$-Estimation in Linear Regression

  • Kim, Bu-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제5권3호
    • /
    • pp.581-589
    • /
    • 1998
  • An algorithm is proposed for the $L_1$-estimation with linear equality and inequality constraints in linear regression model. The algorithm employs a linear scaling transformation to obtain the optimal solution of linear programming type problem. And a special scheme is used to maintain the feasibility of the updated solution at each iteration. The convergence of the proposed algorithm is proved. In addition, the updating and orthogonal decomposition techniques are employed to improve the computational efficiency and numerical stability.

  • PDF