DOI QR코드

DOI QR Code

CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A

  • Jang, Chang-Rim (DEPARTMENT OF MATHEMATICS COLLEGE OF NATURAL SCIENCES UNIVERSITY OF ULSAN) ;
  • Lee, Tae-Hoon (DEPARTMENT OF MATHEMATICS COLLEGE OF NATURAL SCIENCES UNIVERSITY OF ULSAN) ;
  • Park, Keun (DEPARTMENT OF MATHEMATICS COLLEGE OF NATURAL SCIENCES UNIVERSITY OF ULSAN)
  • Published : 2008.11.01

Abstract

Let n be a 2-step nilpotent Lie algebra which has an inner product <, > and has an orthogonal decomposition $n\;=z\;{\oplus}v$ for its center z and the orthogonal complement v of z. Then Each element z of z defines a skew symmetric linear map $J_z\;:\;v\;{\longrightarrow}\;v$ given by <$J_zx$, y> = for all x, $y\;{\in}\;v$. In this paper we characterize Jacobi fields and calculate all conjugate points of a simply connected 2-step nilpotent Lie group N with its Lie algebra n satisfying $J^2_z$ = A for all $z\;{\in}\;z$, where S is a positive definite symmetric operator on z and A is a negative definite symmetric operator on v.

Keywords

References

  1. J. Berndt, F. Tricerri, and L. Vanhecke, Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lecture Notes in Mathematics, 1598. Springer-Verlag, Berlin, 1995
  2. P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric, Ann. Sci. Ecole Norm. Sup. (4) 27 (1994), no. 5, 611-660 https://doi.org/10.24033/asens.1702
  3. P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric. II, Trans. Amer. Math. Soc. 343 (1994), no. 2, 805-828 https://doi.org/10.2307/2154743
  4. R. Gornet and M. B. Mast, Length minimizing geodesics and the length spectrum of Riemannian two-step nilmanifolds, J. Geom. Anal. 13 (2003), no. 1, 107-143 https://doi.org/10.1007/BF02931000
  5. C. Jang, J. Kim, Y. Kim, and K. Park, Conjugate points on the quaternionic Heisenberg group, J. Korean Math. Soc. 40 (2003), no. 1, 61-72 https://doi.org/10.4134/JKMS.2003.40.1.061
  6. C. Jang and K. Park, Conjugate points on 2-step nilpotent groups, Geom. Dedicata 79 (2000), no. 1, 65-80 https://doi.org/10.1023/A:1005154817324
  7. C. Jang and P. E. Parker, Conjugate loci of pseudo-Riemannian 2-step nilpotent Lie groups with nondegenerate center, Ann. Global Anal. Geom. 28 (2005), no. 1, 1-18 https://doi.org/10.1007/s10455-005-5430-8
  8. C. Jang, P. E. Parker, and K. Park, PseudoH-type 2-step nilpotent Lie groups, Houston J. Math. 31 (2005), no. 3, 765-786
  9. A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11 (1981), no. 2, 127-136
  10. A. Kaplan, On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), no. 1, 35-42 https://doi.org/10.1112/blms/15.1.35
  11. J. Kim, Conjugate points on groups of Heisenberg type, Doctoral Thesis, University of Ulsan, 2001
  12. Y. Kim, Jacobi fields and conjugate points on modified H-type Groups, Doctoral Thesis, University of Ulsan, 2002
  13. J. Lauret, Modified H-type groups and symmetric-like Riemannian spaces, Differential Geom. Appl. 10 (1999), no. 2, 121-143 https://doi.org/10.1016/S0926-2245(99)00002-9
  14. G. Walschap, Cut and conjugate loci in two-step nilpotent Lie groups, J. Geom. Anal. 7 (1997), no. 2, 343-355 https://doi.org/10.1007/BF02921727

Cited by

  1. Central conjugate locus of 2-step nilpotent Lie groups 2017, https://doi.org/10.1007/s00209-017-1865-4