• Title/Summary/Keyword: 2-step nilpotent Lie groups

Search Result 2, Processing Time 0.014 seconds

CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A

  • Jang, Chang-Rim;Lee, Tae-Hoon;Park, Keun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1705-1723
    • /
    • 2008
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <, > and has an orthogonal decomposition $n\;=z\;{\oplus}v$ for its center z and the orthogonal complement v of z. Then Each element z of z defines a skew symmetric linear map $J_z\;:\;v\;{\longrightarrow}\;v$ given by <$J_zx$, y> = for all x, $y\;{\in}\;v$. In this paper we characterize Jacobi fields and calculate all conjugate points of a simply connected 2-step nilpotent Lie group N with its Lie algebra n satisfying $J^2_z$ = A for all $z\;{\in}\;z$, where S is a positive definite symmetric operator on z and A is a negative definite symmetric operator on v.

ON CONJUGATE POINTS OF THE GROUP H(2, 1)

  • Jang, Chang-Rim;Park, Keun;Lee, Tae-Hoon
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.249-257
    • /
    • 2006
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <,> and has an orthogonal decomposition $n=\delta{\oplus}\varsigma$ for its center $\delta$ and the orthogonal complement $\varsigma\;of\;\delta$. Then Each element Z of $\delta$ defines a skew symmetric linear map $J_Z:\varsigma{\rightarrow}\varsigma$ given by $=$ for all $X,\;Y{\in}\varsigma$. Let $\gamma$ be a unit speed geodesic in a 2-step nilpotent Lie group H(2, 1) with its Lie algebra n(2, 1) and let its initial velocity ${\gamma}$(0) be given by ${\gamma}(0)=Z_0+X_0{\in}\delta{\oplus}\varsigma=n(2,\;1)$ with its center component $Z_0$ nonzero. Then we showed that $\gamma(0)$ is conjugate to $\gamma(\frac{2n{\pi}}{\theta})$, where n is a nonzero intger and $-{\theta}^2$ is a nonzero eigenvalue of $J^2_{Z_0}$, along $\gamma$ if and only if either $X_0$ is an eigenvector of $J^2_{Z_0}$ or $adX_0:\varsigma{\rightarrow}\delta$ is not surjective.

  • PDF