• Title/Summary/Keyword: order-dimension

Search Result 1,225, Processing Time 0.032 seconds

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

Study on the Prediction of Dimension Variation due to the Temperature Rises of the Composite Material and Box Beam Type Mold Steel (복합재료를 이용한 박스빔 형태 금형의 온도상승에 따른 치수 변화 예측에 관한 연구)

  • Kim, Ho-Sang;Lee, Chan-Hee;Lee, Won-Gi
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.12-16
    • /
    • 2018
  • Composite material and mold steel can be expanded differently with the temperature gradients during the forming process because their coefficients of thermal expansions are not the same. Therefore, in order to manufacture the product with accuracy, it is necessary to verify that the forming pressure on the surface of the composite material is maintained to the required level from the material supplier. In this paper, the pressure between the composite material and mold due to the temperature difference was predicted by finite element analysis and the accuracy of predicted value was verified by measuring the thermal expansions of mold steel by the ruler. The predicted value by finite element analysis is closely in agreement with one by the experiment within the required tolerance value of ${\pm}0.05mm$.

A Study on Clothing Images: Their Constructing Factors and Evaluative Dimensions (의복 이미지의 구성요인과 평가차원에 대한 연구)

  • Chung Ihn-Hee;Rhee Eun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.4 s.44
    • /
    • pp.379-391
    • /
    • 1992
  • This study was intended to identify the constructing factors and the evaluative dimensions of clothing images. A questionnaire consisted of 110 words expressing clothing images was developed, and eight clothing photographs were selected as stimuli. 298 female subjects aged between 22 to 37 responsed to the 110 words for two photographs during September in 1991. After survey, 110 words were reduced to 62 words based on their independence, then factor analysis was conducted. As a result of factor analysis,6 factors-grace, modernity, unattractive- ness, activeness, dressiness, and youthfulness were found out as constructing factors of clothing images. One additional interest was the effect of design line to the formation of clothing images. ANOVA identified that curved line designs were perceived to be more graceful, modern, dressy, and youthful, and straight line designs were perceived to be more unattractive and active. The other interest was the effect of image factors to the total evaluation. So, regression was used. Consequently, the most influential factor to the total evaluation was found out as grace, followed by unattractiveness, modernity, youthfulness and activeness in a descending order. To identify the evaluative dimensions of clothing images, nine words of unattractiveness image factor were eliminated, and multidimensional scaling analysis was employed. Here, three dimensions were judged to be appropriate to explain the result. The first dimension in the multidimensional space was the evaluation in 'mannish image versus feminine image'. The second was the evaluation in 'simple image versus decorative image'. The third was the evaluation in 'pastoral image versus urbane image'.

  • PDF

Development of Wide Connection Method for Vertical Joints of Precast Concrete Walls (프리캐스트 콘크리트 벽체 수직접합부의 광폭형 연결방식 개발)

  • Choi, Eun-Gyu;Shin, Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • This research analyzed the structural efficiency and application by improving the 100 mm width vertical joint to 150 mm and developing three connection methods to reduce the difficulty in assembling and handling PC walls. Moreover, nonlinear finite analysis was used for analyzing. From the analysis results, when double width connection was applied, the PC wall showed larger load capacity and ductility due to the steel bar sharing loads efficiently. Moreover, as the dimension of loops and the number of bars increased, the maximum load capacity increased as well. Also, among the double width connections, the largest capacity showed in the order of welding, ring and C type loop. However, in case of welding type loop connection, the ring type loop is more stable due to changes in different site conditions. Therefore, thorough quality control of welding is necessary.

Characteristics of Variant Dielectric Constants With Respect to Internal Combustion Engine Oil States (내연기관의 엔진오일상태에 대한 유전율 변화 특성)

  • Kim, Dong-Min;Kim, Yong-Ju;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.19-21
    • /
    • 2012
  • The engine oil life of internal combustion engine is shorted by the thermal effect and that causes air pollution. In order to measure the status of engine oil accurately, the exchange of new oil extends the life of combustion engine and reduces environmental pollution. Capacitance probes, such as engine oil and fluids can be used to measure the dielectric constant. In this paper, the degradation of engine oil varies depending on the degree of dielectric properties was analyzed. Depending on the state of the oil, the variant capacitance of the probe was measured by LCR Meter, respectively, and then the permittivity of oil was calculated. In addition, according to the size of the probe by measuring the change in capacitance measurement, accuracy of dielectric constant are presented. According to oil contaminated with the more increase in dielectric constant, we can decide that contaminated oil is available.

The results of recognition survey for patient safety culture in a hospital (일개병원의 환자안전문화 인식도 조사결과)

  • Kim, Ki-Young;Han, Hye-Mi;Park, Yu-Ri;Kim, Sun-Ae;Shin, Hyun-Soo
    • Quality Improvement in Health Care
    • /
    • v.22 no.2
    • /
    • pp.75-90
    • /
    • 2016
  • Objectives: This study measures the level of cognition of employee's patient safety culture and evaluates the current level through comparing the results to external levels. Ultimately it is performed to construct a strategic improvement plan through the basic database for patient's safety culture. Methods: A questionnaire survey of self reporting type was carried out using structured questionnaire of the patient's safety culture for employees currently employed in a hospital. Total responders was 1,129 and a response rate was 54.6%. The survey results were calculated with a percent positive response, and the current level was evaluated by comparing with the survey results of a hospital (2009 and 2014) and the survey result of The Agency for Healthcare Research and Quality(2014). Results: Sub-dimension of high percent positive response for each area were 'teamwork within hospital units' (80%), 'feedback & communication about error' (73%) and 'supervisor/manager expectations & actions promoting safety' (67%). Meanwhile, 'teamwork across hospital units' (31%), 'hospital management support for patient safety' (29%), 'staffing' (27%) and 'non-punitive response to error' (17%) were relatively low percent positive response. Compared to the survey results of AHRQ (2014) for each area, 'teamwork within hospital units' (80%), 'feedback & communication about error' (73%), 'frequency of event reporting' (66%) were at the top 50% percentile level and the remaining sub-dimensions showed a very low level in the lower 10% percentile area. Conclusion: In order to establish a system for patient safety culture within the hospital and evaluate the effect on this, it is necessary to periodically evaluate the patient's safety culture and establish regulations on hospital safety culture to comply with this.

Three Dimensional Numerical Analysis on Rock Cutting Behavior of Disc Cutter Using Particle Flow Code (3차원 입자결합모델을 이용한 디스크 커터의 암석절삭에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.54-65
    • /
    • 2013
  • The LCM (Linear Cutting Machine) test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. In order to overcome this problem, lots of numerical studies have been performed. In this study, the PFC3D (Particle Flow Code in 3 Dimension) has been adopted for numerical analysis on optimum cutter spacing and failure aspects of Busan Tuff. The optimum cutting condition with s/p ratio of 16 and minimum specific energy of $14MJ/m^3$ was derived from numerical analyses. The cutter spacing for Busan Tuff had the good agreements with those of LCM test and numerical analysis by finite element method.

A Study on the Safety Test Regulation for the Metallic Sound Barrier of the Absorption Type (금속재 흡음형 방음벽의 안전 시험 규정 분석 연구)

  • Huh, Young
    • Explosives and Blasting
    • /
    • v.20 no.4
    • /
    • pp.5-15
    • /
    • 2002
  • For the noise reduction measures in a construction field where noise sources such as blasting and pile driving works exist, the construction of the sound barrier near the noise source or receiver is often the most economic measure in order to exclude the propagated sound. The dimension of the barrier is decided by the noise and construction design, and the constructive quality of a soundproof panel shall be secured in accordance with KS F4770 to guarantee the safety of sound barriers. In this paper the problems included in the KS F4770-1 that is the regulation for the metallic sound barrier of the absorption type are identified and it is suggested what to be corrected or improved. Through a series of the analyses, conclusion were reached that it is required to improve test methods in KS F4770-1 as well as to break down loads for building more cost-effective sound barrier. In addition, KS F4770-1 was compared with ZTV-Lsw 88 which is the german regulation for sound barrier design. As a result, it was found that the Korean regulation is more conservative than that of Germany.

Gate Locations Optimization of an Automotive Instrument Panel for Minimizing Cavity Pressure (금형 내부 압력 최소화를 위한 자동차 인스트루먼트 패널의 게이트 위치 최적화)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Cho, Dong-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 2012
  • Cavity pressure, an important factor in injection molding process, should be minimized to enhance injection molding quality. In this study, we decided the locations of valve gates to minimize the maximum cavity pressure. To solve this problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding analysis CAE tool, using the file parsing method of PIAnO (Process Integration, Automation and Optimization) as a commercial process integration and design optimization tool. In order to reduce the computational time for obtaining the optimal design solution, we performed an approximate optimization using a meta-model that replaced expensive computer simulations. To generate the meta-model, computer simulations were performed at the design points selected using the optimal Latin hypercube design as an experimental design. Then, we used micro genetic algorithm equipped in PIAnO to obtain the optimal design solution. Using the proposed design approach, the maximum cavity pressure was reduced by 17.3% compared to the initial one, which clearly showed the validity of the proposed design approach.

Reconstruction of parametrized model using only three vanishing points from a single image (한 영상으로부터 3개의 소실 점들만을 사용한 매개 변수의 재구성)

  • 최종수;윤용인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.419-425
    • /
    • 2004
  • This paper presents a new method which is calculated to use only three vanishing points in order to compute the dimensions of object and its pose from a single image of perspective projection taken by a camera. Our approach is to only compute three vanishing points without informations such as the focal length and rotation matrix from images in the case of perspective projection. We assume that the object can be modeled as a linear function of a dimension vector v. The input of reconstruction is a set of correspondences between features in the model and features in the image. To minimize each the dimensions of the parameterized models, this reconstruction of optimization can be solved by standard nonlinear optimization techniques with a multi-start method which generates multiple starting points for the optimizer by sampling the parameter space uniformly.