• Title/Summary/Keyword: order condition

Search Result 9,919, Processing Time 0.036 seconds

An Experimental Study on the Fire Behavior of CFT Column under the Constant Axial Loading Condition in Fire (일정축력을 받는 콘크리트 충전 각형기둥의 경계조건 변화에 따른 화재거동특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Min, Byung-Youl;Kwon, In-Kyu;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.69-75
    • /
    • 2010
  • A concrete filled square steel tube (CFT) is composed of the external steel material, which its strength is reduced in fire due to sudden temperature increase, and the internal concrete with high thermal capacity that can ensure the fire resistance performance of the structure. Therefore, research about the influence factors of the structural performance of CFT column is required in order to apply CFT column to a fire resisting structure, and additional research about influence for each condition is also necessary. Among the influence factors, the boundary condition between column and beam is important structurally, and it is one of the major factors that determine overall fire resisting performance. This study performed a fire experiment under loading in order to analyse the influences of CFT column to the boundary condition. As the results of the experiment, fire resistance time of 106 minutes was ensured for the clamped-end condition but 89 minutes for the hinge-end condition in case of the 360 cross section. And, fire resistance time of 113 minutes was ensured for the clamped-end condition but 78 minutes for the hinge-end condition in case of the 280 cross section.

Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank (면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석)

  • Kim, Moon-Kyum;Lim, Yun-Mook;Cho, Kyung-Hwan;Jung, Sung-Won;Eo, Jun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

Effects of Coulomb Gauge Condition and Current Continuity Condition on 3-Dimensional FE Analysis for Eddy Current Problems (3차원 와전류문제의 유한요소해석에서 쿨롱게이지조건과 전류연속조건의 영향)

  • Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.483-491
    • /
    • 2005
  • To solve the 3D eddy current problems by using FE(finite element) method with MVP(magnetic vector potential) and electric scalar potential, Coulomb gauge condition and current continuity condition have to be considered. Coulomb gauge condition enforced on existing FE formulations to insure the uniqueness of MVP looks unnatural and current continuity condition which can be driven from Ampere's law looks unnecessary. So in this paper the effect of two conditions on FE formulations are investigated in order to help to obtain accurate numerical simulation results.

Design of a reduced-order $H_{\infty}$ controller using an LMI method (LMI를 이용한 축소차수 $H_{\infty}$ 제어기 설계)

  • Kim, Seog-Joo;Chung, Soon-Hyun;Cheon, Jong-Min;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.729-731
    • /
    • 2004
  • This paper deals with the design of a low order $H_{\infty}$ controller by using an iterative linear matrix inequality (LMI) method. The low order $H_{\infty}$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

Design of a Low-Order H Controller Using an Iterative LMI Method (반복 선형행렬부등식을 이용한 저차원 H 제어기 설계)

  • Kim Chun-Kyung;Kim Kook-Hun;Moon Young-Hyun;Kim Seog-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.279-283
    • /
    • 2005
  • This paper deals with the design of a low-order H/sub ∞/ controller by using an iterative linear matrix inequality (LMI) method. The low-order H/sub ∞/ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, the recently developed penalty function method is applied. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. Numerical experiments showed the effectiveness of the proposed algorithm.

An Experimental Study about Fire Resistance effect on Boundary Condition of CFT Column under Loading in Fire (CFT기둥 재하가열 실험에서의 경계조건에 따른 내화성능 영향에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Cho, Kyung-Suk;Kwon, In-Kyu
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.389-394
    • /
    • 2010
  • A concrete filled square steel tube (CFT) is composed of the external steel material, which its strength is reduced in fire due to sudden temperature increase, and the internal concrete with high thermal capacity that can ensure the fire resistance performance of the structure. Therefore, research about the influence factors of the structural performance of CFT column is required in order to apply CFT column to a fire resisting structure, and additional research about influence for each condition is also necessary. Among the influence factors, the boundary condition between column and beam is important structurally, and it is one of the major factors that determine overall fire resisting performance. This study performed a fire experiment under loading in order to analyse the influences of CFT column to the boundary condition. As the results of the experiment, fire resistance time of 106 minutes was ensured for the clamped-end condition but 89 minutes for the hinge-end condition in case of the 360 cross section. And, fire resistance time of 113 minutes was ensured for the clamped-end condition but 78 minutes for the hinge-end condition in case of the 280 cross section. The difference in the fire resistance performance according to changes in the boundary conditions showed a tendency that larger change effect on the fire resistance performance was derived from smaller cross section area.

  • PDF

MULTIPLICITY RESULTS FOR SOME FOURTH ORDER ELLIPTIC EQUATIONS

  • Jin, Yinghua;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.489-496
    • /
    • 2010
  • In this paper we consider the Dirichlet problem for an fourth order elliptic equation on a open set in $R^N$. By using variational methods we obtain the multiplicity of nontrivial weak solutions for the fourth order elliptic equation.

A Study on the Correlation of Condition Monitoring Parameters of Functional Machine Failures. (기계시스템 파손에 따른 상태진단 파라미터의 상관관계 해석에 관한 연구)

  • 장래혁;강기홍;공호성;최동훈
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.285-290
    • /
    • 2002
  • Integrated condition monitoring is required to monitor effectively the machine conditions since machine failures could not be monitored accurately by any single measurement parameter. Application of various condition monitoring techniques is therefore preferred in many cases in order to diagnosis the machine condition. However it inevitably requires lots of maintenance cost and sometimes it could be proved to over-maintenance unnecessarily. This could happen especially when one measurement parameter closely correlates to another. Therefore correlation analysis of various monitoring parameters has to be performed to improve the reliability of diagnosis. In this work, Pearson correlation coefficient was used to analyze the correlation between condition monitoring parameters of an over-loaded machine system where the vibration, wear and temperature were monitored simultaneously. The result showed that Pearson correlation coefficient could be regarded as a good measure for evaluating the availability of condition monitoring technology.