• Title/Summary/Keyword: orbit space

Search Result 1,094, Processing Time 0.032 seconds

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

A Design of Isoflux Radiation Pattern Microstrip Patch Antenna for LEO Medium-sized Satellites (저궤도 중형급 위성용 isoflux 방사패턴을 갖는 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2015
  • In this paper, a microstrip antenna with isoflux radiation patterns is presented for Low Earth Orbit(LEO) medium-sized satellites. Because of making isoflux patterns, the ground of proposed antenna under the patch was transform into a trapezoid for adjusting fringing field between the patch and ground. Next, the cavity walls were located at end of the ground for reducing back radiation. The proposed antenna was designed to receive S-band uplink(2.025 ~ 2.110 GHz) and the dimensions of the designed antenna with the ground are $160mm{\times}160mm{\times}40mm$ ($1.1{\lambda}{\times}1.1{\lambda}{\times}0.3{\lambda}$, ${\lambda}$ is the free-space wavelength at 2.068 GHz). Measured -10 dB bandwidth was 90 MHz(4.4 %) and it covers the required system bandwidth. Also, measured 3 dB axial ratio was 18 MHz(0.9 %). On the other hand, measured radiation patterns were isoflux patterns and its measured gain was 5.31 dBi at E-plane $46^{\circ}$ in the y-axis pol.

A Study on Updating of Digital Map using Beacon GPS (Beacon GPS를 이용한 수치지도 갱신에 관한 연구)

  • Yun, Bu-Yeol;Moon, Doo-Youl;Hong, Soon-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2006
  • Nowadays, various digital maps on a reduced scale were drawn in Korea including the topographic series of a nation. Though these digital maps are drawn and revised by using aerial photograph or satellite image, there are some problems that it is difficult to revise or renew the topography and natural feature immediately which changes frequently. As the countermeasures of these problems we use GPS accumbency method, which provides user with convenience and accumbency accuracy which is required to revise and renew digital maps. But acquiring correct position by using GPS only may cause not a few errors because of environmental effect of satellite signal errors that GPS obtains. Although accumulated errors which is the major problem of existing method was diminished owing to the position signal received from satellite which is about 20,183km above, the area that can not receives the signal is occur such as woods and high-rise buildings space. And because of the GDOP (Geometry Dilution of Precision) of GPS satellite and the periodically changing orbit of the satellite, the position calculating problems occur. For settlement of these problems and accurate position determination, DGPS (Differential GPS) is indispensably needed. So, in this study, by adapting Radio Beacon Receiver for marine position determination which is the most convenience method of DGPS methods, we elevated accuracy of modification and renewal of digital map and, having wide application in various measurements, proposed the rapid measurement method about widespread area. In this study, wewant to propose the work scheme of rapid modification and renewal of digital map by using Beacon GPS which is comparatively cheap of all the DGPS methods and which makes it possible to measure independently.

  • PDF

A Study on Analysis of Multipath Signal Detection using GPS Signal Strength Information (GPS 신호세기 정보를 이용한 다중경로신호 검출 분석에 대한 연구)

  • Kim, Dusik;Park, Kwan-Dong;Kim, Hye-In;Tae, Hyunu
    • Journal of Navigation and Port Research
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • The number of mobile terminals equipped with a GPS module is steadily increasing today. However, because they using code pseudorange measurements in positioning, the positioning accuracy of mobile terminals is lower than that of those receivers using carrier phases. Especially, the multipath signal causes more significant errors in code pseudoranges. Therefore, the techniques of multipath detection and elimination is necessary. In this study, as an initial analysis of multipath detection and elimination technique development, we tested the feasibility of multipath signal detection using GPS signal strength information. We found that the GPS signal strength increases as the elevation angle gets higher in the open-sky environment. Also, we found that the signal strength decreases when there were some signal reflectors nearby. We checked the repeatability of the signal strength variation characteristics by reflecting repeat time of GPS satellites. As a result, this characteristics repeats almost perfectly when GPS satellites pass the same orbit. Therefore, we found that it is not a temporary phenomenon and the multipath signal detection should be possible by using GPS signal strength information.

Thermal and Mechanical Properties of OG POSS Filled DGEBA/DDM (OG POSS의 첨가가 DGEBA/DDM의 열적, 기계적 물성에 미치는 영향)

  • Choi, Chunghyeon;Kim, YunHo;Kumar, Sarath Kumar Sathish;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.379-383
    • /
    • 2017
  • A study on the low Earth orbit (LEO) space environment have been conducted as a use of composites have increased. Among the LEO environmental factors, atomic oxygen is one of the most critical factors because atomic oxygen can react and erode a surface of polymer-based composite materials. POSS (Polyhedral Oligomeric Silsesquioxane) materials have been widely studied as an atomic oxygen-resistant nanomaterial. In this study, nanocomposites, which are composed of OG (Octaglycidyldimethylsilyl) POSS nanomaterials and DGEBA/DDM epoxy, were fabricated to find out its thermal and mechanical properties. FT-IR results showed that the nanocomposites were fully cured and contained OG POSS enough. Thermogravimetric analysis and differential scanning calorimetry were performed to measure the thermal properties of the nanocomposites. The initial mass loss temperature and char yield were increased through the filling of OG POSS. As the content of OG POSS increased, glass transition temperature tended to increase to 5 wt.% of OG POSS, but the temperature decreased significantly at 10 wt.% of OG POSS. The tensile test results showed that the content of OG POSS did not affect tensile strength and tensile stiffness.

Failure Function of Transversely Isotropic Rock Based on Cassini Oval (Cassini 난형곡선을 활용한 횡등방성 암석 파괴함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.243-252
    • /
    • 2017
  • Since the failure behavior of transversely isotropic rocks is significantly different from that of isotropic rocks, it is necessary to develop a transversely isotropic rock failure function in order to evaluate the stability of rock structures constructed in transversely isotropic rock masses. In this study, a spatial distribution function for strength parameters of transversely isotropic rocks is proposed, which is based on the Cassini oval curve proposed by 17th century astronomer Giovanni Domenico Cassini to model the orbit of the Sun around the Earth. The proposed distribution function consists of two model parameters which could be identified through triaxial compression tests on transversely isotropic rock samples. The original Mohr-Coulomb (M-C) failure function is extended to a three-dimensional transversely isotropic M-C failure function by employing the proposed strength parameter distribution function for the spatial distributions of the friction angle and cohesion. In order to verify the suitability of the transversely isotropic M-C failure function, both the conventional triaxial compression and true triaxial compression tests of transversely isotropic rock samples are simulated. The predicted results from the numerical experiments are consistent with the failure behavior of transversely isotropic rocks observed in the actual laboratory tests. In addition, the simulated result of true triaxial compression tests hints that the dependence of rock strength on intermediate principal stress may be closely related to the distribution of the microstructures included in the rock samples.

Spherical Slepian Harmonic Expression of the Crustal Magnetic Vector and Its Gradient Components (구면 스레피안 함수로 표현된 지각 자기이상값과 구배 성분)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.269-280
    • /
    • 2016
  • I presented three vector crustal magnetic anomaly components and six gradients by using spherical Slepian functions over the cap area of $20^{\circ}$ of radius centered on the South Pole. The Swarm mission, launched by European Space Agency(ESA) in November of 2013, was planned to put three satellites into the low-Earth orbits, two in parallel in East-West direction and one in cross-over of the higher altitude. This orbit configuration will make the gradient measurements possible in North-South direction, vertical direction, as well as E-W direction. The gravity satellites, such as GRACE and GOCE, have already implemented their gradient measurements for recovering the accurate gravity of the Earth and its temporal variation due to mass changes on the subsurface. However, the magnetic gradients have little been applied since Swarm launched. A localized magnetic modeling method is useful in taking an account for a region where data availability was limited or of interest was special. In particular, computation to get the localized solutions is much more efficient and it has an advantage of presenting high frequency anomaly features with numbers of solutions fewer than the global ones. Besides, these localized basis functions that were done by a linear transformation of the spherical harmonic functions, are orthogonal so that they can be used for power spectrum analysis by transforming the global spherical harmonic coefficients. I anticipate in scientific and technical progress in the localized modeling with the gradient measurements from Swarm and here will do discussion on the results of the localized solution to represent the three vector and six gradient anomalies over the Antarctic area from the synthetic data derived from a global solution of the spherical harmonics for the crustal magnetic anomalies of Swarm measurements.

Three body problem in early 20th century (20세기초의 삼체문제에 관해서)

  • Lee, Ho Joong
    • Journal for History of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.53-67
    • /
    • 2012
  • Today, it is necessary to calculate orbits with high accuracy in space flight. The key words of Poincar$\acute{e}$ in celestial mechanics are periodic solutions, invariant integrals, asymptotic solutions, characteristic exponents and the non existence of new single-valued integrals. Poincar$\acute{e}$ define an invariant integral of the system as the form which maintains a constant value at all time $t$, where the integration is taken over the arc of a curve and $Y_i$ are some functions of $x$, and extend 2 dimension and 3 dimension. Eigenvalues are classified as the form of trajectories, as corresponding to nodes, foci, saddle points and center. In periodic solutions, the stability of periodic solutions is dependent on the properties of their characteristic exponents. Poincar$\acute{e}$ called bifurcation that is the possibility of existence of chaotic orbit in planetary motion. Existence of near exceptional trajectories as Hadamard's accounts, says that there are probabilistic orbits. In this context we study the eigenvalue problem in early 20th century in three body problem by analyzing the works of Darwin, Bruns, Gyld$\acute{e}$n, Sundman, Hill, Lyapunov, Birkhoff, Painlev$\acute{e}$ and Hadamard.

GEO-KOMPSAT-2A AMI Best Detector Select Map Evaluation and Update (천리안위성2A호 기상탑재체 Best Detector Select 맵 평가 및 업데이트)

  • Jin, Kyoungwook;Lee, Sang-Cherl;Lee, Jung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.359-365
    • /
    • 2021
  • GEO-KOMPSAT-2A (GK2A) AMI (Advanced Meteorological Imager) Best Detector Select (BDS) map is pre-determined and uploaded before the satellite launch. After the launch, there is some possibility of a detector performance change driven by an abrupt temperature variation and thus the status of BDS map needs to be evaluated and updated if necessary. To investigate performance of entire elements of the detectors, AMI BDS analyses were conducted based on a technical note provided from the AMI vendor (L3HARRIS). The concept of the BDS analysis is to investigate the stability of signals from detectors while they are staring at targets (deep space and internal calibration target). For this purpose, Long Time Series (LTS) and Output Voltage vs. Bias Voltage (V-V) methods are used. The LTS for 30 secs and the V-V for two secs are spanned respectively for looking at the targets to compute noise components of detectors. To get the necessary data sets, these activities were conducted during the In-Orbit Test (IOT) period since a normal operation of AMI is stopped and special mission plans are commanded. With collected data sets during the GK2A IOT, AMI BDS map was intensively examined. It was found that about 1% of entire detector elements, which were evaluated at the ground test, showed characteristic changes and those degraded elements are replaced by alternative best ones. The stripping effects on AMI raw images due to the BDS problem were clearly removed when the new BDS map was applied.