DOI QR코드

DOI QR Code

Spherical Slepian Harmonic Expression of the Crustal Magnetic Vector and Its Gradient Components

구면 스레피안 함수로 표현된 지각 자기이상값과 구배 성분

  • 김형래 (공주대학교 지질환경과학과)
  • Received : 2016.06.21
  • Accepted : 2016.08.25
  • Published : 2016.08.28

Abstract

I presented three vector crustal magnetic anomaly components and six gradients by using spherical Slepian functions over the cap area of $20^{\circ}$ of radius centered on the South Pole. The Swarm mission, launched by European Space Agency(ESA) in November of 2013, was planned to put three satellites into the low-Earth orbits, two in parallel in East-West direction and one in cross-over of the higher altitude. This orbit configuration will make the gradient measurements possible in North-South direction, vertical direction, as well as E-W direction. The gravity satellites, such as GRACE and GOCE, have already implemented their gradient measurements for recovering the accurate gravity of the Earth and its temporal variation due to mass changes on the subsurface. However, the magnetic gradients have little been applied since Swarm launched. A localized magnetic modeling method is useful in taking an account for a region where data availability was limited or of interest was special. In particular, computation to get the localized solutions is much more efficient and it has an advantage of presenting high frequency anomaly features with numbers of solutions fewer than the global ones. Besides, these localized basis functions that were done by a linear transformation of the spherical harmonic functions, are orthogonal so that they can be used for power spectrum analysis by transforming the global spherical harmonic coefficients. I anticipate in scientific and technical progress in the localized modeling with the gradient measurements from Swarm and here will do discussion on the results of the localized solution to represent the three vector and six gradient anomalies over the Antarctic area from the synthetic data derived from a global solution of the spherical harmonics for the crustal magnetic anomalies of Swarm measurements.

지역에 최적화된 스레피안 구면함수(spherical Slepian function)를 활용하여 남극을 중심으로 반경 $20^{\circ}$ 범위의 지역에 지각 자기이상의 3개의 방향 성분과 6개의 구배성분들을 표현하였다. 2013년 11월 유럽 항공 우주국이 발사한 3개의 자력 위성인 Swarm은 궤도 전개를 통해 동서 방향의 구배값은 물론 남북 및 수직방향의 구배값을 얻을 수 있도록 계획하였다. 이미 발사된 여러 중력위성들(i.e., GRACE and GOCE) 역시 이러한 구배값을 활용하여 보다 정확한 중력 이상값 및 지표에서의 시간에 따른 중력변화 연구등을 수행해 왔으나 자력 위성자료를 통해서는 많은 연구들이 이루어지고 있지 않는 상태이다. 한편 지역화 모델링은 관심 지역 또는 자료 분포의 제한인 지역인 경우에 활용될 수 있다. 또한 전지구 모델보다 효율적인 연산이 가능하여 위성자료로부터 고해상도의 지각 자기이상값을 표현할 수 있다는 장점을 지니고 있다. 또한 기존의 전지구 구면조화함수의 선형 결합으로 이루어진 기저함수들은 서로 직교성(orthogonality)이 유지되므로 스레피안 구면함수의 계수를 전지구 구면조화함수의 계수로 변환이 가능하여 스펙트럼 분석에 활용할 수 있다. 따라서 Swarm 위성자료의 구배 성분을 이용한 지역화 모델링 방법은 앞으로 많은 활용이 기대되며 여기서는 Swarm 위성자료로부터 얻어진 지각 자기이상값의 전지구 조화함수 계수 모델을 사용하여 자기이상의 방향성분과 구배성분을 유도하고 이를 스레피안 구면 조화함수에 적용하여 관심지역인 남극지역의 방향 성분과 구배 성분을 표현하고 이에 대한 결과를 토의 하고자 한다.

Keywords

References

  1. Asgharzadeh, M.F., von Frese, R.R. and Kim, H.R. (2008) Spherical prism magnetic effects by Gauss-Legendre quadrature integration, Geophys. J. Int., v.173, p.315-333. https://doi.org/10.1111/j.1365-246X.2007.03692.x
  2. Backus, G., Parker, R.L. and Constable, C. (1996) Foundations of Geomagnetism, Cambridge Univ. press, p.369.
  3. Beggan, C.D., Saarimaki, J., Whaler, K.A. and Simons, F.J. (2013) Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions, Geophys. J. Int., v.193, p.136-148. https://doi.org/10.1093/gji/ggs122
  4. Bird, P., Kagan, Y.Y. and Jackson, D.D. (2002) Plate tectonics and earthquake potential of spreading ridges and oceanic transform faults, in: S. Stein and J. T. Freymueller (editors), Plate Boundary Zones, Geodynamics Series, v.30, p.203-218.
  5. Bouman, J. M. Fuchs, E. Ivins, W. van der Wal, E. Schrama, P. Visser and Horwath, M. (2014) Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry. Geophys. Res. Lett. v.34, p.5919-5926.
  6. Bouman, J., Ebbing, J., Meekes, S., Fattah, R.A., Fuchs, M., Gradmann, S., Haagmans, R., Lieb, V., Schmidt, M., Dettmering, D. and Bosch, W. (2015) GOCE gravity gradient data for lithospheric modelling. Int. J. Appl. Earth Obs. v.35, p.16-30. https://doi.org/10.1016/j.jag.2013.11.001
  7. Bradley, L.M. and Frey, H. (1991) Magsat magnetic anomaly contrast across Labrador Sea passive margins, J. Geophys. Res., 96, 16,161-16,168. https://doi.org/10.1029/91JB01500
  8. De Santis, A., Kerridge, D.J. and Barraclough, D.R. (1989) A Spherical Cap Harmonic Model of the Crustal Magnetic Anomaly Field in Europe by Magsat. In Geomagnetism and Paleomagnetism, ed. F.J. Lowes et al., pp.1-17.
  9. Du, J., Chen, C., Lesur, V. and Wang, L. (2015) Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame, Geosci. Model Dev., v.8, p.1979-1990. https://doi.org/10.5194/gmd-8-1979-2015
  10. Ebbing, J., et al. (2013) Advancements in satellite gravity gradient data for crustal studies. The Leading Edge, v.32, p.900-906. https://doi.org/10.1190/tle32080900.1
  11. Fuchs, M.J., Bouman, J., Broerse, T., Visser, P. and Vermeersen, B. (2013) Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry. J. Geophys. Res. v.118, p.5712-5721. https://doi.org/10.1002/jgrb.50381
  12. Gaya-Pique, L.R., Kim, H., von Frese, R.R., Chiappini, M., Taylor, P.T. and Golynsky, A.V. (2005) Spherical Cap Harmonic Modeling of the Antarctic Magnetic Anomaly Map, AGU Fall meeting, Abs. 2005AGUSMGP13A..02G
  13. Grunbaum, F.A. (1981) Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions, SIAM J. Alg. Disc. Meth., v.2, p.136-141. https://doi.org/10.1137/0602017
  14. Haagmans, R. and Floberghaben, R. (2014) Swarm: from Earth to Magnetosphere one year after launch, AGU Fall meeting Abs., 2014AGUFMSM11B..01H.
  15. Haines, G. (1985) Spherical cap harmonic analysis, J. Geophys. Res., v.90, p.2583-2591. https://doi.org/10.1029/JB090iB03p02583
  16. Han, S.-C. (2008) Improved regional gravity fields on the Moon from Lunar Prospector tracking data by means of localized spherical harmonic functions, J. Geophys. Res., v.113, p.E11012. https://doi.org/10.1029/2008JE003166
  17. Han, S.-C. and Simons, F.J. (2008) Spatiospectral localization of global geopotential fields from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra-Andaman earthquake, J. Geophys. Res. 113.
  18. Harig, Christopher, K. W. Lewis, A. Plattner and Simons, F.J. (2015) A suite of software analyzes data on the sphere. Eos, 96, 2015EO025851.
  19. Ivanic, J. and Ruedenberg, K. (1996) Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion, J. Phys. Chem, v.100, p.6,342-6,347. https://doi.org/10.1021/jp953350u
  20. Langel R.A. (1987) The Main Field. In Geomagnetism, vol. I, ed. J.A. Jacobs, Academic Press Limited, London.
  21. Li, J. and Shen, W.-B. (2015) Monthly GRACE detection of coseismic gravity change associated with 2011 Tohoku-Oki earthquake using northern gradient approach, Earth, Planets and Space, 67, DOI: 10.1186/s40623-015-0188-0.
  22. Lowes, F.J. (1966) Mean-square values on sphere of spherical harmonic vector ?elds, J. Geophys. Res., v.71, p.2179. https://doi.org/10.1029/JZ071i008p02179
  23. Kim, H.R. Von Frese, R.R. Golynsky, A.V. Taylor, P.T. and Kim, J.W (2005) Crustal analysis of maud rise from combined satellite and near-surface magnetic survey data Earth, Planets, Space, v.57, p.717-726. https://doi.org/10.1186/BF03351851
  24. Kim, H.R., von Frese, R.R.B., Taylor, P.T., Golynsky, A.V., Gaya-Pique, L.R. and Ferraccioli, F. (2007) Improved magnetic anomalies of the Antarctic lithosphere from satellite and near-surface data, Geophys. J. Int., v.171, p.119-126. https://doi.org/10.1111/j.1365-246X.2007.03516.x
  25. Kim, H.R. and von Frese, R.R. (2013) Localized analysis of polar geomagnetic jerks, Tectonophysics, v.585, p.26-33. https://doi.org/10.1016/j.tecto.2012.06.038
  26. Kim, H.R., von Frese, R., Hong, J. and Golynsky, A. (2013) A regional lithospheric magnetic modeling over Antarctic region, European Geosci. Union, Abs., v.15, p.5491.
  27. Kim, H.R. (2015) A localized secular variation model of the geomagnetic field over Northeast Asia region between 1997 to 2011, Econ. Environ. Geology, v.48, p.51-63. https://doi.org/10.9719/EEG.2015.48.1.51
  28. Kotsiaros, S. and Olsen, N. (2012) The geomagnetic field gradient tensor, Int. J. Geomath., v.3, p.297-314. https://doi.org/10.1007/s13137-012-0041-6
  29. Panet, I., Pajot-Metivier, G., Greff-Lefftz, M., Metivier, L., Diament, M. and Mandea, M. (2014) Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients. Nat. Geosci., v.7, p.131-135. https://doi.org/10.1038/ngeo2063
  30. Plattner, A. and Simons, F.J. (2014) Spatiospectral concentration of vector fields on a sphere, App. Comp. Harmonic Analys., v.36, p.1-22. https://doi.org/10.1016/j.acha.2012.12.001
  31. Plattner, A. and Simons, F.J. (2015) High-resolution local magnetic field models for the Martian South Pole from Mars Global Surveyor data, J. Geophys. Res., v.120, p.1543-1566.
  32. Ravat, D. B. Wang, E. Wildermuth and Taylor, P.T. (2002) Gradients in the interpretation of Satellite-altitude Magnetic Data: An Example from Central Africa, J. Geodynamics, v.33, p.131-142. https://doi.org/10.1016/S0264-3707(01)00059-X
  33. Sabaka, T.J., Olsen, N., Tyler, R.H., and Kuvshinov, A. (2015) CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Orsted, SAC-C and observatory data, Geophys. J. Int., v.200, p.1596-1626. https://doi.org/10.1093/gji/ggu493
  34. Seton, M., Muller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. and Chandler, M. (2012) Global continental and ocean basin reconstructions since 200Ma, Earth-Science Reviews, v.113, p.212-270. https://doi.org/10.1016/j.earscirev.2012.03.002
  35. Simons, F. J. and Dahlen, F. (2006) Spherical Slepian functions and the polar gap in geodesy, Geophys. J. Int., v.166, p.1039-1061. https://doi.org/10.1111/j.1365-246X.2006.03065.x
  36. Simons, F. J., Dahlen, F. and Wieczorek, M.A. (2006) Spatiospectral concentration on a sphere, SIAM Review, v.48, p.504-536. https://doi.org/10.1137/S0036144504445765
  37. Slobbe, D.C., Simons, F.J. and Klees, R. (2012) The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid, J Geodesy, v.86, p.609-628. https://doi.org/10.1007/s00190-012-0543-x
  38. Taylor, P.T. and Kis, K.I. (2014) Satellite-altitude horizontal magnetic gradient anomalies used to define the Kursk magnetic anomaly, J. App. Geophys., v.109, p.133-139. https://doi.org/10.1016/j.jappgeo.2014.07.018
  39. Thebault, E., Schott, J.-J., Mandea, M. and Hoffbeck, J.-P. (2004) A new proposal for spherical cap harmonic modelling, Geophys. J. Int., v.159, p.83-103. https://doi.org/10.1111/j.1365-246X.2004.02361.x
  40. Thebault, E., Schott, J. and Mandea, M. (2006) Revised spherical cap harmonic analysis (R-SCHA): Validation and properties J. Geophys. Res., 111.
  41. Thebault, E. P. Vigneron, S. Maus, A. Chulliat, O. Sirol and Hulot, G. (2013) Swarm SCARF dedicated lithospheric field inversion chain, Earth, Planets and Space, v.65, p.1257-1270. https://doi.org/10.5047/eps.2013.07.008
  42. von Frese, R.R., Kim, H.R., Tan, L., Kim, J.W., Taylor, P.T., Branch, G., Purucker, M., Alsdorf, D. and Raymond, C. (1999) Satellite magnetic anomalies of the Antarctic crust, Ann. di Geofis., v.42, p.309-326.
  43. Wang, L., Shum C., K. and Jekeli, C. (2012) Gravitational gradient changes following the 2004 December 26 Sumatra-Andaman earthquake inferred from GRACE, Geophys. J. Int., v.191, p.1109-1118.
  44. Wieczorek, M.A. and Simons, F.J. (2005) Localized spectral analysis on the sphere, Geophys. J. Int., v.162, p.655-675. https://doi.org/10.1111/j.1365-246X.2005.02687.x
  45. Winch, D., Ivers, D., Turner, J. and Stening, R. (2005) Geomagnetism and Schmidt quasi-normalization. Geophys. J. Int., v.160, p.487-504. https://doi.org/10.1111/j.1365-246X.2004.02472.x