DOI QR코드

DOI QR Code

A Design of Isoflux Radiation Pattern Microstrip Patch Antenna for LEO Medium-sized Satellites

저궤도 중형급 위성용 isoflux 방사패턴을 갖는 마이크로스트립 안테나 설계

  • 김준원 (충남대학교 전자전파정보통신공학과) ;
  • 우종명 (충남대학교 전파공학과)
  • Received : 2015.03.03
  • Accepted : 2015.04.06
  • Published : 2015.04.30

Abstract

In this paper, a microstrip antenna with isoflux radiation patterns is presented for Low Earth Orbit(LEO) medium-sized satellites. Because of making isoflux patterns, the ground of proposed antenna under the patch was transform into a trapezoid for adjusting fringing field between the patch and ground. Next, the cavity walls were located at end of the ground for reducing back radiation. The proposed antenna was designed to receive S-band uplink(2.025 ~ 2.110 GHz) and the dimensions of the designed antenna with the ground are $160mm{\times}160mm{\times}40mm$ ($1.1{\lambda}{\times}1.1{\lambda}{\times}0.3{\lambda}$, ${\lambda}$ is the free-space wavelength at 2.068 GHz). Measured -10 dB bandwidth was 90 MHz(4.4 %) and it covers the required system bandwidth. Also, measured 3 dB axial ratio was 18 MHz(0.9 %). On the other hand, measured radiation patterns were isoflux patterns and its measured gain was 5.31 dBi at E-plane $46^{\circ}$ in the y-axis pol.

본 논문에서는 저궤도 중형급 위성에 장착에 적합한 isoflux 방사패턴을 갖는 마이크로스트립 패치 안테나를 제안하였다. 제안된 안테나는 isoflux 방사패턴 특성을 얻기 위해 패치 아래의 접지면을 사다리꼴 모양으로 변형시켜 패치 끝의 개구면과 접지면 사이에 발생되는 프린징 필드를 조절하였다. 그리고 후방으로 방사되는 레벨을 줄이기 위해서 패치 안테나 양 끝에 cavity wall을 채택하였다. 끝으로 패치의 길이와 급전점을 조절하여 원형편파를 발생시켰다. 설계된 안테나는 S-band uplink(2.025 ~ 2.110 GHz)를 수용하도록 설계하였으며, 접지면을 포함한 안테나의 전체 크기는 $160mm{\times}160mm{\times}40mm$ ($1.1{\lambda}{\times}1.1{\lambda}{\times}0.3{\lambda}$, ${\lambda}$은 2.068 GHz의 공기 중 한 파장)를 가진다. 또한 -10 dB 대역폭은 90 MHz(4.4 %)로 목표주파수 대역을 만족시키며, 3 dB이하 축비대역폭은 18 MHz(0.9 %)로 측정되었고, 방사패턴은 isoflux 형태를 가지며, y축 편파 E-plane $46^{\circ}$에서 최대 5.31 dBi의 이득이 측정되었다.

Keywords

References

  1. S. Hebib, N.J.G. Fonseca and H. Aubert, "Compact printed quadrifilar helical antenna with isoflux-shaped pattern and high cross-polarization discrimination," IEEE Antennas and Wireless Propagation Letters, Vol. 10, pp. 635-638, June 2011. https://doi.org/10.1109/LAWP.2011.2159189
  2. D. Colantonio and C. Rosito, "A spa- ceborne telemetry loaded bifilar helical antenna for LEO satellites," 2009 Microwave and Optoelectronics Conference (IMOC), pp. 741-745, Belem, Brazil, November 2009.
  3. P. Rezaei, "Design of quadrifilar helical antenna for use on small satellites," IEEE Antennas and Propagation Society International Symposium, vol. 3 pp. 2895-2898, June 2004.
  4. M. Ahmad, M. Amin and A.A Khan, "Effect of ground plane on the input impedance of quadrifilar helix antenna," 2015 12th International Bhurban Con- ference on Applied Sciences and Technology(IBCAST), pp.574-578, Islamabad, Pakistan, January, 2015.
  5. E.-C. Choi, J.W. Lee and T.-K. Lee, "Modified S-band satellite antenna with isoflux pattern and circularly polarized wide beamwidth," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp.1319-1322, October 2013. https://doi.org/10.1109/LAWP.2013.2285231
  6. K. F. Lee and K. F. Tong, "Microstrip patch antennas-basic characteristics and some recent advances," Proceedings of the IEEE, vol. 100, no. 7, pp.2169-2180, July 2012. https://doi.org/10.1109/JPROC.2012.2183829
  7. J. R. James and P. S. Hall, Handbook of microstrip antennas. London, United Kingdom, Peter Peregrinus Ltd., 1989.
  8. F. Casado, A. Arriola, E. Arruti, I. Ortego and J.I. Sancho, "Frequency estimation for compact microstrip antennas," Electronics Letters, vol. 51, no. 7 pp.546-548, April 2015. https://doi.org/10.1049/el.2014.3846