• 제목/요약/키워드: optimum pressure

검색결과 1,729건 처리시간 0.03초

최적조건 선정을 위한 Pad 특성과 Wafer Final Polishing의 가공표면에 관한 연구 (The Study on the Wafer Surface and Pad Characteristic for Optimal Condition in Wafer Final Polishing)

  • 원종구;이은상;이상균
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.26-32
    • /
    • 2012
  • Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study will report the characteristic of wafer according to processing time, machining speed and pressure which have major influence on the abrasion of Si wafer polishing. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The characteristic of wafer surface according to processing condition is selected to use a result data that measure a pressure, machining speed, and the processing time. This result is appeared by the characteristic of wafer surface in machining condition. Through that, the study cans evaluation a wafer characteristic in variable machining condition. It is important to obtain optimal condition. Thus the optimum condition selection of ultra precision Si wafer polishing using load cell and infrared temperature sensor. To evaluate each machining factor, use a data through each sensor. That evaluation of abrasion according to variety condition is selected to use a result data that measure a pressure, machining speed, and the processing time. And optimum condition is selected by this result.

다구찌 기법을 이용한 수소 연료전지용 가스켓 설계 (Design of Gaskets for Hydrogen Fuel Cells Using Taguchi Method)

  • 천강민;안준현;허장욱
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.66-72
    • /
    • 2022
  • The Mooney-Rivlin second order optimal strain energy function derived through uniaxial tensile test and analysis was applied to a gasket to confirm the internal stress and surface pressure generated during compression. The Taguchi method, a statistical technique, was used to design the optimum shape of the gasket, and through characteristic evaluation, the optimum shape of the gasket was obtained when the reference plane (T: 0.15 mm), contact surface (W: 1.00 mm), and curvature (R: 0.30 mm) were used. It was determined that the optimum shape yields a von Mises stress of 4.83 MPa, and the contact pressure stress is 20.14 MPa, which satisfies breakage and sealing requirements. In the future, we plan to manufacture a jig that can measure surface pressure to conduct comparative verification studies between the test results and analysis results.

복합화력 발전플랜트의 근사 최적 열설계 해석 (Approximate Optimum Thermal Design Analysis of Combined Cycle Power Plant)

  • 전용준;신흥태;이봉렬;김동섭;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.782-787
    • /
    • 2001
  • An optimum thermal design analysis of the combined cycle power plant with triple pressure heat recovery steam generator was performed by the numerical simulation. The optimum design module used in the paper is DNCONF, a function of IMSL Library, which is widly known as a method to search for the local optimum. The objective function to be minimized is the cost of total power plant including the steam turbine power enhancement premium. The result of this paper shows that the cost reduces if the design point of power plant becomes the local optimum, and many calculations at various initial conditions should be carried out to get the value near the global optimum.

  • PDF

산지도로의 상향침투수압으로 인한 포장파손 방지 배수성 기층재료의 적정입도 연구 (A Study on the Optimum Particle Size Distribution of the Drainable Base in Mountain Road for the Prevention of the Pavement Damage by Uplift Seepage Pressure)

  • 임영규;김영규;윤찬영;이승우
    • 한국도로학회논문집
    • /
    • 제13권2호
    • /
    • pp.21-29
    • /
    • 2011
  • 최근 들어 온난화 등의 영향으로 태풍이나 집중호우가 빈번히 발생하고 있으며 이로 인한 산지 도로의 산사태, 토석류, 상향침투수압 등에 의한 인명, 시설물 피해도 극심하게 나타나고 있다. 산지 도로의 상향침투수압은 심각한 포장 파손을 발생시키기도 한다. 산지 측의 높은 지하수위로 인한 상향침투수압을 감소시키기 위해서는 지하배수공법이 매우 효과적 이라고 판단된다. 지하배수 공법을 원활하게 작동하기 위해서는 배수기층이 적합한 투수계수와 지지력을 갖추어야 한다. 따라서 본 연구에서는 적절한 투수성과 지반 지지력을 확보할 수 있는 최적의 배수기층 입도에 대한 연구를 수행하였다.

유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발 (A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator)

  • 윤영환;장주섭;최명진
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater glider

  • He, Yanru;Song, Baowei;Dong, Huachao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.439-449
    • /
    • 2018
  • In this paper, multi-objective optimization of a multi-bubble pressure cabin in the underwater glider with Blended-Wing-Body (BWB) is carried out using Kriging and the Non-dominated Sorting Genetic Algorithm (NSGA-II). Two objective functions are considered: buoyancy-weight ratio and internal volume. Multi-bubble pressure cabin has a strong compressive capacity, and makes full use of the fuselage space. Parametric modeling of the multi-bubble pressure cabin structure is automatic generated using UG secondary development. Finite Element Analysis (FEA) is employed to study the structural performance using the commercial software ANSYS. The weight of the primary structure is determined from the volume of the Finite Element Structure (FES). The stress limit is taken into account as the constraint condition. Finally, Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) method is used to find some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. The best solution is compared with the initial design results to prove the efficiency and applicability of this optimization method.

미세입자 분사가공시 직교배열표의 통계적 분석에 의한 표면형상의 최적 분사 조건 (Optimal Blasting Conditions for Surface Profile when Micro Particle Blasting by Statistical Analysis of Orthogonal Arrays)

  • 권대규;왕덕현
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.148-154
    • /
    • 2016
  • A study on the micro particle blasting was conducted to find the optimum conditions of the blasted surface of aluminum 6061. The particle type such as $Al_2O_3$ and SiC, nozzle diameter, pressure, standoff distance and injection time were used as blasting conditions. Statistical method of orthogonal arrays(ANOVA) was used to find optimum conditions of maximum depth and maximum diameter of blasted surface. Particle type, nozzle diameter, and pressure were found to be the main factors of maximum blasted depth and diameter. Maximum blasted diameter was affected by increasing pressure and nozzle diameter but saturated maximum diameter. Maximum blasted depth was affected by pressure and nozzle diameter when aluminum 6061 was blasted with $Al_2O_3$ particle. The value of surface roughness was increased as pressure and nozzle diameter increased when aluminum 6061 was blasted with SiC.

드로우 금형의 에어포켓 수축에 따르는 내부공기 압력예측에 대한 연구 (Prediction of Air Pocket Pressure in Draw Die during Stamping Process)

  • 구태경;황세준;박원규;오세욱
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.10-18
    • /
    • 2008
  • Metal stamping is widely used in the mass-production process of the automobile industry. During the stamping process, air may be trapped between the draw die and the panel. The high pressure of trapped air induces imperfections on the panel surface and creates a situation where an extremely high tonnage of punch is required. To prevent these problems, many air ventilation holes are drilled through the draw die and the punch. The present work has developed a simplified mathematical formulation for computing the pressure of the air pocket based on the ideal gas law and isentropic relation. The pressure of the air pocket was compared to the results by the commercial CFD code, Fluent, and experiments. The present work also used the Bisection method to calculate the optimum cross-sectional area of the air ventilation holes, which did not make the pressure of the air pocket exceed the prescribed maximum value.

PSR 공정의 최적 Cyclic Scheduling 결정 (Determination of optimum cyclic scheduling of PSR processes)

  • 황덕재;문일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.808-811
    • /
    • 1996
  • A mathematical model was developed for the simulation of a Pressure Swing Adsorption process with dehydrogenation reaction. The minimum number of beds and optimum operating sequence were determined using MINLP under the given operating conditions. Based on these results, we estimated the minimum annual cost.

  • PDF

Application of Box Wilson experimental design method for removal of acid red 95 using ultrafiltration membrane

  • Akdemir, Ezgi Oktav
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.309-315
    • /
    • 2018
  • The applicability of the ultrafiltration process for color removal from dye-containing water has been examined in this study. The optimization of major process variables, such as dye concentration, chitosan concentration and transmembrane pressure on permeate flux and color removal efficiency was investigated. To find the most appropriate results for the experiment, the Box-Wilson experimental design method was employed. The results were correlated by a response function and the coefficients were determined by regression analysis. Permeate flux variation and color removal efficiency determined from the response functions were in good agreement with the experimental results. The optimum conditions of chitosan concentration, dye concentration and pressure were 50 mg/l, 50 mg/l and 3 bars, respectively for the highest permeate flux. On the other hand, optimum conditions for color removal efficiency were determined as 50 mg/l of dye concentration, 50 mg/l of chitosan concentration and 1 bar of pressure.