• Title/Summary/Keyword: optimum pressure

Search Result 1,728, Processing Time 0.029 seconds

Optimum electrode selection for measuring the abdominal pressure using bio-impedance method (비침습적 복압 측정을 위한 생체 임피던스 전극의 최적 위치 선정)

  • An, Yang-Su;Kim, Keo-Sik;Song, Chul-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.46-48
    • /
    • 2007
  • In this study, we determined the optimum electrode pair for measuring the abdominal pressure using bio-impedance method. Because impedance changes differ from a weight, a height, contractile force, volume of muscle and blood other or whatever of individuals, it was quantified using values of impedance change, correlation coefficient and SNR. Our results showed the optimum electrode pair (1, 9) which could detect impedance changes due to an increase of the intensity of the abdominal pressure. The correlation coefficient and quadratic function between the RMS values of EMG and the impedance changes were 0.87 and $y=0.0014x^2$+0.0620x+0.6958, respectively. It demonstrated that the abdominal pressure could be measured non-invasively and simply using bio-impedance method. We propose that this optimum electrode configuration would be useful for future studies involving the convenient measurement of abdominal pressure by ambulatory urodynamics monitoring study.

  • PDF

Effect of Nose Bar Pressure on Knife Check and Tensile Strength of Veneer from the Log of Japanese Larch (Larix leptolepis Gordon), Cryptomeria(Cryptomeria japonica D. Don.), and Japanese Cypress (Chamaecyparis obtusa Endl.) (노스바 압축도가 삼나무, 편백, 일본잎갈나무 로타리단판의 이활 및 인장강도에 미치는 영향)

  • Hyun, Jung-Ihn
    • Journal of the Korean Wood Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.6-8
    • /
    • 1980
  • Japanese larch veneer, Cryptomeria veneer and japanese cypress veneer were peeled with condition of nose bar pressure at 5%, 10%, 15%, to find the optimum nose bar pressure. 1. Optimum nose bar pressure was 15% in 2mm thickness veneer of japanese larch. 2. Optimum nose bar pressure was 5% in 2mm thickness veneer of Cryptomeria. 3. Optimum nose bar pressure was 15% in 2mm thickness veneer of japanese cypress.

  • PDF

A Study on the Optimum Shape of High-Pressure Injection Nozzle (고압 분사노즐의 최적형상에 관한 연구)

  • 이종선;김형철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.37-43
    • /
    • 2003
  • This study makes to flow analysis of computational fluid dynamics(CFD) according to the basic theory of turbulent flow regarding high-pressure injection nozzle. It also makes structural analysis to find out the structural validity of the optimum shape of high-pressure injection nozzle. It divides to two areas such as plunger areas and high-pressure injection nozzle area including plunger.

Investigation of the Optimum Injection Pressure in Pressure Grouting by Laboratory Model Tests (모형시험을 통한 지반보강 그라우팅의 적정주입압력 연구)

  • 박종호;박용원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2003
  • The ground reinforcement effect of pressure grouting depends on grout penetration into ground. It is not, however, easy to predict the grout penetration in the design process because of the heterogeneity of ground conditions. This study investigates the proper grouting pressure and grouting method through laboratory model tests for pressure grouting using loose to medium dense crushed rock and sandy ground using specially designed and fabricated device. The optimum injection pressure, grout quantity and injection time are investigated through performing pressure grouting under changing conditions of injection in this test. From the test results, it was found that optimum injection pressure covers the range of 3 to 4kg/cm$^2$.

The Effect of Pressure-time Condition Affect in Properties of Superplastic Formed part (압력 조건이 초소성 성형품의 성질에 미치는 영향)

  • Lee, Yeong-Seon;Lee, Jeong-Hwan
    • 연구논문집
    • /
    • s.29
    • /
    • pp.185-194
    • /
    • 1999
  • The shape and thickness distribution according to the pressure-time curve were carried out using the FEM and experiment. Also, mechanical properties were investigated. The square cup parts have been formed with pressure-time curve generated by result of analysis. The tensile strength and elongation have been investigated according to applied pressure conditions using the tensile test specimen obtained from the superplastic formed cup. We can use to predict the shape of formed part under the applied pressure using the FEM analysis. In the case of optimum pressure condition, the thickness distribution and mechanical properties were improved. From this study, we can find the important of optimum pressure-time condition. We have investigated about the forming of airplane part and fuel tank for motorcycle. If the applied load used in boundary conditions was appropriate, the simulation result coincides with the formed part. However, it is very difficult to define the pressure condition in complicated shape. Thus, it is need to develop the optimum pressure condition for superplastic forming.

  • PDF

Optimum Electrode Selection for Measuring Abdominal Pressure using Bio-Impedance Method (생체 임피던스 방법을 이용하여 복압을 측정하기 위한 최적 전극위치 선정)

  • Kim, Keo-Sik;Lee, Sang-Ok;Seo, Jeong-Hwan;Kim, Kyeong-Seop;Song, Chul-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1339-1342
    • /
    • 2007
  • In this study, we determined the optimum electrode pair for measuring the abdominal pressure using bio-impedance method and compared with conventional methods. Because impedance changes differ from a weight, a height, contractile force, volume of muscle and blood other or whatever of individuals, it was quantified using values of impedance change, correlation coefficient and SNR. Our results showed the optimum electrode pair (1, 9) which could detect impedance changes due to an increase of the intensity of the abdominal pressure. The correlation coefficient and quadratic function between the RMS values of EMG and the impedance changes were 0.87 and $y=0.0014x^2+0.0620x+0.6958$, respectively. It demonstrated that the abdominal pressure could be measured noninvasively and simply using bio-impedance method. We propose that this optimum electrode configuration would be useful for future studies involving the convenient measurement of abdominal pressure by ambulatory urodynamics monitoring study.

An Inflence of Inlet Pressure in the Design of Sector-Shaped Pad Thrust Bearings (부채꼴형 추력베어링의 설계에 있어서 선단압력의 영향)

  • 김종수;김경웅
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.33-42
    • /
    • 1994
  • An influence of inlet pressure on the performance of sector-shaped pad thrust bearings is investigated theoretically. The optimum conditions of film thickness or the optimum positions of pivot are found through the evaluation of load capacity for all available conditions of film thickness, under the operating conditions which the thermal and pad deformation effects can be neglected. The bearing performance including the inlet pressure effects is obtained for a wide operating ranges that inertia parameter(Re$^{*}$) is up to unity, and for the various cases of pad extent angle (number of pad) and the three cases of the angle between pads. The results show that the inlet pressure has a large influence on the performance of sector-shaped pad thrust bearings. In the design of sector-shaped pad bearings, due to the inlet pressure, the optimum number of pad is varied with the operating speed and the angle between pads, and the optimum position of pivot is located toward the leading edge along with the operating speed increases.

A Study on the Skirt Size Selection of a Composite Pressure Vessel using Optimum Analysis Technique (최적화 해석 기법을 이용한 복합재 압력용기의 스커트 치수 선정에 관한 연구)

  • Kim, Jun-Hwan;Jeon, Kwang-Woo;Shin, Kwang-Bok;Hwang, Tae-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.403-407
    • /
    • 2012
  • The purpose of this study is to find the optimum skirt size for a composite pressure vessel using optimum analysis technique. The size optimization for skirt shape of a composite pressure vessel was conducted using sub-problem approximation method and batch processing codes programmed by APDL(ANSYS Parametric Design Language). The thickness and length of skirt part were selected as design variables for the optimum analysis. The objective function and constraints were chosen as weight and displacement of skirt part, respectively. The numerical results showed that the weight of skirt of a composite pressure vessel would be saved by maximum 4.38% through the size optimization analysis for the skirt shape.

  • PDF

A Study on the Design of Back Pressure for Automotive Scroll Compressor

  • Koo, In-Hwe;Lee, Geon-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The optimum design of back pressure chamber is one of the most important factors in designing scroll compressors because it has a great influence on the efficiency and other design parameters. The design process can be divided into 2 parts. One is obtaining the optimum pressure of the chamber and keeping it in constant value. The other is finding out the minimum inflow rate of medium with which back pressure chamber is filled. In this study we are focused on the first step. At first we added a simple structure that can change back pressure without reassembling compressor. It makes possible to obtaining optimum back pressure. Then we designed an equipment that the back pressure control valve assembly could be independently tested with. Spring was redesigned to decrease stiffness variation. Also sealing mechanism of back pressure control valve was improved to more effective way. As a result, it was verified that in a real mode test back pressure variation could be retained in 2.3% with discharge pressure and operating frequency varied. In addition the integrated structure of back pressure control valve is expected to contribute to effective manufacturing process.

A study on the Fabrication of Copper-clad Aluminum Composite using Hydrostatic Extrusion (정수압 압출을 이용한 Copper-clad Aluminum 복합계 제조에 대한 연구)

  • 한운용;이경엽;박훈재;윤덕계;김승수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.179-184
    • /
    • 2004
  • In this work, a copper-clad aluminum composite was fabricated using hot hydrostatic extrusion with various extrusion ratios (8.5, 19, 49) and semi-die angles (30, 45, 60 degree) at a temperature of 32$0^{\circ}C$, Material characteristics of copper-clad aluminum composites were determined from compression tests and hardness tests The results showed that for ER of 8.5, the optimum semi-die angle was below or equal to 30 degree and a pressure drop was about 31%. For ER of 19, the optimum semi-die angle was in the range of 40 to 50 degree and a pressure drop was about 38%. In the case of ER=49, the optimum semi-die angle was above or equal to 60 degree and a pressure drop was about 36%. Compressive yield strength was maximum for ER of 8.5 and semi-die angle of 30 degree and the value of maximum was 155 MPa. Uniform hardness distribution was obtained as the extrusion ratio increases and the semi-die angle decreases. In the case of ER=8.5 and semi-die angle of 30 degree, the lowest extrusion pressure and the maximum compressive yield strength was obtained. Therefor, it was concluded that the optimum extrusion condition for fabricated copper-clad aluminum composites under hydrostatic pressure environment was ER of 19 and semi-die angle of 30 degree.