• Title/Summary/Keyword: optimal placement

Search Result 368, Processing Time 0.029 seconds

Capacity and Placement of MR Damper for Vibration Control of MDOF System (다자유도 시스템의 진동제어를 위한 MR감소기 용량 및 위치 선정)

  • 이상현;민경원;이루지;김대곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.34-40
    • /
    • 2004
  • In this paper, peliminary design procedure of magnetorheological (MR) dampers is developed for controlling the building response induced by seismic excitation. Hysteretic biviscous model which is simple and can describe the hysteretic characteristics of MR damper is used for parametric studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force. A method is proposed for the optimal placement and number of MR dampers, and its effectiveness is verified by comparing it with the simplified search algorithm. Numerical results indicate that the capacity, number and the placement can be reasonably determined using the proposed design procedure.

  • PDF

A Replica Placement Algorithm reducing Time Complexity (시간 복잡도를 개선한 웹 서버 배치 알고리즘)

  • Kim, Seon-Ho;Yoon, Mi-Youn;Shin, Yong-Tae
    • The KIPS Transactions:PartC
    • /
    • v.11C no.3
    • /
    • pp.345-352
    • /
    • 2004
  • Recently, contents distribution technologies have been used to cope with the explosive demand for Web services. In this paper, we addressed the issue of the optimal placement of replicas in the environment where Web contents are replicated. We placed replicas so that clients can have access to replicas with the proper delay and bandwidth. We attempted to solve the problem via dynamic programming considering cost of delay and traffic We have come up with time complexity that is less than $O(n^2)$. We defined the threshold and proved that our algorithm guarantees the reliable services.

Adaptive and optimized agent placement scheme for parallel agent-based simulation

  • Jin, Ki-Sung;Lee, Sang-Min;Kim, Young-Chul
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.313-326
    • /
    • 2022
  • This study presents a noble scheme for distributed and parallel simulations with optimized agent placement for simulation instances. The traditional parallel simulation has some limitations in that it does not provide sufficient performance even though using multiple resources. The main reason for this discrepancy is that supporting parallelism inevitably requires additional costs in addition to the base simulation cost. We present a comprehensive study of parallel simulation architectures, execution flows, and characteristics. Then, we identify critical challenges for optimizing large simulations for parallel instances. Based on our cost-benefit analysis, we propose a novel approach to overcome the performance constraints of agent-based parallel simulations. We also propose a solution for eliminating the synchronizing cost among local instances. Our method ensures balanced performance through optimal deployment of agents to local instances and an adaptive agent placement scheme according to the simulation load. Additionally, our empirical evaluation reveals that the proposed model achieves better performance than conventional methods under several conditions.

Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare

  • Hajforoosh, Somayeh;Nabavi, Seyed M.H.;Masoum, Mohammad A.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.501-512
    • /
    • 2012
  • Social welfare maximization in a double-sided auction market is performed by implementing an aggregation-based particle swarm optimization (CAPSO) algorithm for optimal placement and sizing of one Static Synchronous Series Compensator (SSSC) device. Dallied simulation results (without/with line flow constraints and without/with SSSC) are generated to demonstrate the impact of SSSC on the congestion levels of the modified IEEE 14-bus test system. The proposed CAPSO algorithm employs conventional quadratic smooth and augmented quadratic nonsmooth generator cost curves with sine components to improve the accurate of the model by incorporating the valve loading effects. CAPSO also employs quadratic smooth consumer benefit functions. The proposed approach relies on particle swarm optimization to capture the near-optimal GenCos and DisCos, as well as the location and rating of SSSC while the Newton based load flow solution minimizes the mismatch equations. Simulation results of the proposed CAPSO algorithm are compared to solutions obtained by sequential quadratic programming (SQP) and a recently implemented Fuzzy based genetic algorithm (Fuzzy-GA). The main contributions are inclusion of customer benefit in the congestion management objective function, consideration of nonsmooth generator characteristics and the utilization of a coordinated aggregation-based PSO for locating/sizing of SSSC.

Optimal Speed Control of Hybrid Electric Vehicles

  • Yadav, Anil Kumar;Gaur, Prerna;Jha, Shyama Kant;Gupta, J.R.P.;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • The main objective of this paper is to control the speed of Nonlinear Hybrid Electric Vehicle (HEV) by controlling the throttle position. Various control techniques such as well known Proportional-Integral-Derivative (PID) controller in conjunction with state feedback controller (SFC) such as Pole Placement Technique (PPT), Observer Based Controller (OBC) and Linear Quadratic Regulator (LQR) Controller are designed. Some Intelligent control techniques e.g. fuzzy logic PD, Fuzzy logic PI along with Adaptive Controller such as Self Organizing Controller (SOC) is also designed. The design objective in this research paper is to provide smooth throttle movement, zero steady-state speed error, and to maintain a Selected Vehicle (SV) speed. A comparative study is carried out in order to identify the superiority of optimal control technique so as to get improved fuel economy, reduced pollution, improved driving safety and reduced manufacturing costs.

Simultaneous optimal damper placement using oil, hysteretic and inertial mass dampers

  • Murakami, Yu;Noshi, Katsuya;Fujita, Kohei;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.261-276
    • /
    • 2013
  • Oil, hysteretic and inertial mass dampers are representatives of passive dampers used for smart enhancement of seismic performance of building structures. Since oil dampers have a nonlinear relief mechanism and hysteretic dampers possess nonlinear restoring-force characteristics, several difficulties arise in the evaluation of buildings including such dampers. The purpose of this paper is to propose a practical method for simultaneous optimal use of such dampers. The optimum design problem is formulated so as to minimize the maximum interstory drift under design earthquakes in terms of a set of damper quantities subject to an equality constraint on the total cost of dampers. The proposed method to solve the optimum design problem is a successive procedure which consists of two steps. The first step is a sensitivity analysis by using nonlinear time-history response analyses, and the second step is a modification of the set of damper quantities based upon the sensitivity analysis. Numerical examples are conducted to demonstrate the effectiveness and validity of the proposed design method.

Sensor placement selection of SHM using tolerance domain and second order eigenvalue sensitivity

  • He, L.;Zhang, C.W.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.189-208
    • /
    • 2006
  • Monitoring large-scale civil engineering structures such as offshore platforms and high-large buildings requires a large number of sensors of different types. Innovative sensor data information technologies are very extremely important for data transmission, storage and retrieval of large volume sensor data generated from large sensor networks. How to obtain the optimal sensor set and placement is more and more concerned by researchers in vibration-based SHM. In this paper, a method of determining the sensor location which aims to extract the dynamic parameter effectively is presented. The method selects the number and place of sensor being installed on or in structure by through the tolerance domain statistical inference algorithm combined with second order sensitivity technology. The method proposal first finds and determines the sub-set sensors from the theoretic measure point derived from analytical model by the statistical tolerance domain procedure under the principle of modal effective independence. The second step is to judge whether the sorted out measured point set has sensitive to the dynamic change of structure by utilizing second order characteristic value sensitivity analysis. A 76-high-building benchmark mode and an offshore platform structure sensor optimal selection are demonstrated and result shows that the method is available and feasible.

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

Accuracy of Thoracolumbar Spine K-Wire Placement in Toy, Small and Medium Breed Dogs: Novice Surgeons with 3D Printed Patient-Specific Guide versus an Experienced Surgeon with Freehand Techniques

  • Hwa-Joeng Shin;Hae-Beom Lee;Yoon-Ho Roh
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.294-301
    • /
    • 2022
  • Three-dimensional (3D) printing technique has been widely used for accurate screw and pin placement in orthopedic surgery and neurosurgery. However, there are few reports comparing the accuracy between the patient-specific guides and freehand Kirschner wire (K-wire) placement in toy, small and medium breed dogs. This study aimed to assess the accuracy of 3D printed patient-specific guides (PSGs) in pin insertion in the thoracolumbar vertebrae of toy breed dogs and compare the outcomes between novice and experienced surgeons. The experiment was conducted on the thoracolumbar vertebrae of 21 euthanized toy breed dogs (median weight, 5.95 kg). The optimal insertion angle placement was determined and patient-specific guides for K-wire insertion were designed and 3D printed using computed tomography (CT) and a 3D computer-aided design program of three vertebrae (Thoracic 12-Lumbar 1). K-wire tracts were made by experienced and novice surgeons and compared to assess the accuracy based on postoperative CT. Based on postoperative CT, in the experienced group, 61 out of 63 pins (96.8%) were fully contained inside the vertebral body and lamina, whereas two pins (3.2%) had perforated the vertebral canal (grade 3, 2-4 mm breach). However, all the pins in the novice group were fully contained. The use of 3D printed PSGs for pin insertion in the thoracolumbar region is an accurate and safe alternative to freehand screw placement by novice surgeons in toy, small and medium breed dogs. Operations with 3D printed PSGs allow novice surgeons to achieve better or similar outcomes in accurate placement of pin/screws in vertebrae.

Performance based optimal seismic retrofitting of yielding plane frames using added viscous damping

  • Lavan, O.;Levy, R.
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.307-326
    • /
    • 2010
  • This paper is concerned with the optimal seismic design of added viscous dampers in yielding plane frames. The total added damping is minimized for allowable values of local performance indices under the excitation of an ensemble of ground motions in both regular and irregular structures. The local performance indices are taken as the maximal inter-story drift of each story and/or the normalized hysteretic energy dissipated at each of the plastic hinges. Gradients of the constraints with respect to the design variables (damping coefficients) are derived, via optimal control theory, to enable an efficient first order optimization scheme to be used for the solution of the problem. An example of a ten story three bay frame is presented. This example reveals the following 'fully stressed characteristics' of the optimal solution: damping is assigned only to stories for which the local performance index has reached the allowable value. This may enable the application of efficient and practical analysis/redesign type methods for the optimal design of viscous dampers in yielding plane frames.