• Title/Summary/Keyword: optimal discriminant model

Search Result 33, Processing Time 0.028 seconds

A Decision Support Model for Optimal Delivery of Public Construction Projects (공공건설사업의 최적 발주방식 선정을 위한 의사결정지원모델)

  • Park, Heetaek;Park, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.22-34
    • /
    • 2016
  • The Project Delivery System (PDS) is used in mixed way without clear classification from tendering system and the standard itself that can be selected is set with project budget or estimated cost only. Essentially, the PDS should consider and reflect project characteristics and types, internal and external factors for the purpose of improving the lives of citizens and their welfare. However, the current status is not operated flexibly due to the given budget, period and uniform laws and regulations. In order to solve this problem, this study suggests a Decision Support Model to select the optimal PDS for public construction projects. The current problem of the PDS for public construction projects were identified and the application of a decision support model was proposed. Subsequently a decision-making model was suggested for each PDS using the identified factors and linear discriminant function of discriminant analysis. An additional questionnaire survey and actual practical case analysis were carried out to verify the effectiveness and applicability of the model to actual work. It can be used by adjusting the decision support model and detailed factors according to the specific characteristics of public organization, ability of person in charge and project type.

Optimal Optical Filters of Fluorescence Excitation and Emission for Poultry Fecal Detection

  • Kim, Tae-Min;Lee, Hoon-Soo;Kim, Moon-S.;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, such as excitation and emission filters, were optimally determined by linear discriminant analysis (LDA). An alternating scheme was proposed for numerical implementation. Fluorescence characteristics of organic materials and feces of poultry carcasses are analyzed by LDA to design the optimal excitation and emission filters for poultry fecal inspection. Results: The most appropriate excitation filter was UV-A (about 360 nm) and blue light source (about 460 nm) and band-pass filter was 660-670 nm. The classification accuracy and false positive are 98.4% and 2.5%, respectively. Conclusions: The proposed method is applicable to other agricultural products which are distinguishable by their spectral properties.

The Hybrid Systems for Credit Rating

  • Goo, Han-In;Jo, Hong-Kyuo;Shin, Kyung-Shik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.3
    • /
    • pp.163-173
    • /
    • 1997
  • Although numerous studies demonstrate that one technique outperforms the others for a given data set, it is hard to tell a priori which of these techniques will be the most effective to solve a specific problem. It has been suggested that the better approach to classification problem might be to integrate several different forecasting techniques by combining their results. The issues of interest are how to integrate different modeling techniques to increase the predictive performance. This paper proposes the post-model integration method, which tries to find the best combination of the results provided by individual techniques. To get the optimal or near optimal combination of different prediction techniques, Genetic Algorithms (GAs) are applied, which are particularly suitable for multi-parameter optimization problems with an object function subject to numerous hard and soft constraints. This study applies three individual classification techniques (Discriminant analysis, Logit model and Neural Networks) as base models for the corporate failure prediction. The results of composite predictions are compared with the individual models. Preliminary results suggests that the use of integrated methods improve the performance of business classification.

  • PDF

Index of union and other accuracy measures (Index of Union와 다른 정확도 측도들)

  • Hong, Chong Sun;Choi, So Yeon;Lim, Dong Hui
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.4
    • /
    • pp.395-407
    • /
    • 2020
  • Most classification accuracy measures for optimal threshold are divided into two types: one is expressed with cumulative distribution functions and probability density functions, the other is based on ROC curve and AUC. Unal (2017) proposed the index of union (IU) as an accuracy measure that considers two types to get them. In this study, ten kinds of accuracy measures (including IU) are divided into six categories, and the advantages of the IU are studied by comparing the measures belonging to each category. The optimal thresholds of these measures are obtained by setting various normal mixture distributions; subsequently, the first and second type of errors as well as the error sums corresponding to each threshold are calculated. The properties and characteristics of the IU statistic are explored by comparing the discriminative power of other accuracy measures based on error values.The values of the first type error and error sum of IU statistic converge to those of the best accuracy measures of the second category as the mean difference between the two distributions increases. Therefore, IU could be an accuracy measure to evaluate the discriminant power of a model.

Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition (계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식)

  • 성재모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • For the handwritten digit recognition, this paper Proposes a hierarchical Gator features extraction method and a Bayesian network for them. Proposed Gator features are able to represent hierarchically different level information and Bayesian network is constructed to represent hierarchically structured dependencies among these Gator features. In order to extract such features, we define Gabor filters level by level and choose optimal Gabor filters by using Fisher's Linear Discriminant measure. Hierarchical Gator features are extracted by optimal Gabor filters and represent more localized information in the lower level. Proposed methods were successfully applied to handwritten digit recognition with well-known naive Bayesian classifier, k-nearest neighbor classifier. and backpropagation neural network and showed good performance.

Segmenting Inpatients by Mixture Model and Analytical Hierarchical Process(AHP) Approach In Medical Service (의료서비스에서 혼합모형(Mixture model) 및 분석적 계층과정(AHP)를 이용한 입원환자의 시장세분화에 관한 연구)

  • 백수경;곽영식
    • Health Policy and Management
    • /
    • v.12 no.2
    • /
    • pp.1-22
    • /
    • 2002
  • Since the early 1980s scholars have applied latent structure and other type of finite mixture models from various academic fields. Although the merits of finite mixture model are well documented, the attempt to apply the mixture model to medical service has been relatively rare. The researchers aim to try to fill this gap by introducing finite mixture model and segmenting inpatients DB from one general hospital. In section 2 finite mixture models are compared with clustering, chi-square analysis, and discriminant analysis based on Wedel and Kamakura(2000)'s segmentation methodology schemata. The mixture model shows the optimal segments number and fuzzy classification for each observation by EM(expectation-maximization algorism). The finite mixture model is to unfix the sample, to Identify the groups, and to estimate the parameters of the density function underlying the observed data within each group. In section 3 and 4 we illustrate results of segmenting 4510 patients data including menial and ratio scales. And then, we show AHP can be identify the attractiveness of each segment, in which the decision maker can select the best target segment.

Isolated Word Recognition Using k-clustering Subspace Method and Discriminant Common Vector (k-clustering 부공간 기법과 판별 공통벡터를 이용한 고립단어 인식)

  • Nam, Myung-Woo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • In this paper, I recognized Korean isolated words using CVEM which is suggested by M. Bilginer et al. CVEM is an algorithm which is easy to extract the common properties from training voice signals and also doesn't need complex calculation. In addition CVEM shows high accuracy in recognition results. But, CVEM has couple of problems which are impossible to use for many training voices and no discriminant information among extracted common vectors. To get the optimal common vectors from certain voice classes, various voices should be used for training. But CVEM is impossible to get continuous high accuracy in recognition because CVEM has a limitation to use many training voices and the absence of discriminant information among common vectors can be the source of critical errors. To solve above problems and improve recognition rate, k-clustering subspace method and DCVEM suggested. And did various experiments using voice signal database made by ETRI to prove the validity of suggested methods. The result of experiments shows improvements in performance. And with proposed methods, all the CVEM problems can be solved with out calculation problem.

Development of Prediction Model for Fill Slope Failure of Forest Road (임도성토사면(林道盛土斜面)의 붕괴예측(崩壞豫測)모델 개발(開發))

  • Cha, Du Song;Ji, Byoung Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.3
    • /
    • pp.324-330
    • /
    • 2001
  • This study was carried out to develop prediction model for fill slope failure of forest road in igneous rock area using fuzzy theory which is non-linear model. The results were summarized as follows. The importance weight of factors on fill slope failure was ranked in the order of fill slope length, fill slope gradient, soil type, aspect, road position and longitudinal slope form. The degree of potential slope failure was high mainly under the such conditions as fill slope length greater than 8m, fill slope gradients steeper than $40^{\circ}$, constituent material with weathered rock, aspect of NE and road on ridge position. The optimal prediction model was developed with 0.15 of optimal coefficient(c) and 3.1165 of ${\lambda}$-value when fuzzy integral value of slope failure possibility is more than 0.5. And the discriminant accuracy was 86.8%, which shows the high availability for discrimination.

  • PDF

A Comparative Study on Prediction Performance of the Bankruptcy Prediction Models for General Contractors in Korea Construction Industry

  • Seung-Kyu Yoo;Jae-Kyu Choi;Ju-Hyung Kim;Jae-Jun Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.432-438
    • /
    • 2011
  • The purpose of the present thesis is to develop bankruptcy prediction models capable of being applied to the Korean construction industry and to deduce an optimal model through comparative evaluation of final developed models. A study population was selected as general contractors in the Korean construction industry. In order to ease the sample securing and reliability of data, it was limited to general contractors receiving external audit from the government. The study samples are divided into a bankrupt company group and a non-bankrupt company group. The bankruptcy, insolvency, declaration of insolvency, workout and corporate reorganization were used as selection criteria of a bankrupt company. A company that is not included in the selection criteria of the bankrupt company group was selected as a non-bankrupt company. Accordingly, the study sample is composed of a total of 112 samples and is composed of 48 bankrupt companies and 64 non-bankrupt companies. A financial ratio was used as early predictors for development of an estimation model. A total of 90 financial ratios were used and were divided into growth, profitability, productivity and added value. The MDA (Multivariate Discriminant Analysis) model and BLRA (Binary Logistic Regression Analysis) model were used for development of bankruptcy prediction models. The MDA model is an analysis method often used in the past bankruptcy prediction literature, and the BLRA is an analysis method capable of avoiding equal variance assumption. The stepwise (MDA) and forward stepwise method (BLRA) were used for selection of predictor variables in case of model construction. Twenty two variables were finally used in MDA and BLRA models according to timing of bankruptcy. The ROC-Curve Analysis and Classification Analysis were used for analysis of prediction performance of estimation models. The correct classification rate of an individual bankruptcy prediction model is as follows: 1) one year ago before the event of bankruptcy (MDA: 83.04%, BLRA: 93.75%); 2) two years ago before the event of bankruptcy (MDA: 77.68%, BLRA: 78.57%); 3) 3 years ago before the event of bankruptcy (MDA: 84.82%, BLRA: 91.96%). The AUC (Area Under Curve) of an individual bankruptcy prediction model is as follows. : 1) one year ago before the event of bankruptcy (MDA: 0.933, BLRA: 0.978); 2) two years ago before the event of bankruptcy (MDA: 0.852, BLRA: 0.875); 3) 3 years ago before the event of bankruptcy (MDA: 0.938, BLRA: 0.975). As a result of the present research, accuracy of the BLRA model is higher than the MDA model and its prediction performance is improved.

  • PDF

A case of corporate failure prediction

  • Shin, Kyung-Shik;Jo, Hongkyu;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.199-202
    • /
    • 1996
  • Although numerous studies demonstrate that one technique outperforms the others for a given data set, there is often no way to tell a priori which of these techniques will be most effective to solve a specific problem. Alternatively, it has been suggested that a better approach to classification problem might be to integrate several different forecasting techniques by combining their results. The issues of interest are how to integrate different modeling techniques to increase the prediction performance. This paper proposes the post-model integration method, which means integration is performed after individual techniques produce their own outputs, by finding the best combination of the results of each method. To get the optimal or near optimal combination of different prediction techniques. Genetic Algorithms (GAs) are applied, which are particularly suitable for multi-parameter optimization problems with an objective function subject to numerous hard and soft constraints. This study applied three individual classification techniques (Discriminant analysis, Logit and Neural Networks) as base models to the corporate failure prediction context. Results of composite prediction were compared to the individual models. Preliminary results suggests that the use of integrated methods will offer improved performance in business classification problems.

  • PDF