Isolated Word Recognition Using k-clustering Subspace Method and Discriminant Common Vector

k-clustering 부공간 기법과 판별 공통벡터를 이용한 고립단어 인식

  • 남명우 (혜전대학 디지털전자디자인과)
  • Published : 2005.03.25

Abstract

In this paper, I recognized Korean isolated words using CVEM which is suggested by M. Bilginer et al. CVEM is an algorithm which is easy to extract the common properties from training voice signals and also doesn't need complex calculation. In addition CVEM shows high accuracy in recognition results. But, CVEM has couple of problems which are impossible to use for many training voices and no discriminant information among extracted common vectors. To get the optimal common vectors from certain voice classes, various voices should be used for training. But CVEM is impossible to get continuous high accuracy in recognition because CVEM has a limitation to use many training voices and the absence of discriminant information among common vectors can be the source of critical errors. To solve above problems and improve recognition rate, k-clustering subspace method and DCVEM suggested. And did various experiments using voice signal database made by ETRI to prove the validity of suggested methods. The result of experiments shows improvements in performance. And with proposed methods, all the CVEM problems can be solved with out calculation problem.

본 논문에서는 M. Bilginer 등이 제안한 CVEM(common vector extraction method)을 이용하여 한국어 화자독립 고립단어 인식실험을 수행하였다. CVEM은 학습용 음성신호들로부터 공통된 특징의 추출이 비교적 간단하고, 많은 계산 량을 필요로 하지 않을 뿐만 아니라 높은 인식 결과를 보여주는 알고리즘이다. 그러나 학습 음성의 개수를 일정 한도 이상으로 늘릴 수 없고, 추출된 공통벡터들 간의 구별정보(discriminant information)를 가지고 있지 않다는 문제점을 가지고 있다. 임의의 음성군으로부터 최적의 공통벡터를 추출하기 위해서는 다양한 음성들을 학습에 사용해야만 하는데 CVEM은 학습용 음성 개수에 제한이 있으므로 지속적인 인식률 향상을 기대하기 어렵다. 또한 공통벡터들 간의 구별정보 부재는 단어 결정에 있어서 치명적인 오류의 원인이 될 수 있다. 본 논문에서는 CVEM이 가지고 있는 이러한 문제점들을 보완하면서 인식률을 향상시킬 수 있는 새로운 방법인 KSCM(k-clustering subspace method)과 DCVEM(discriminant common vector extraction method)을 제안하였고 이 방법을 사용하여 고립단어를 인식하였다. 그리고 제안한 방법들의 우수성을 입증하기 위해 ETRI에서 제작한 음성 데이터베이스를 사용, 다양한 방법으로 실험을 수행하였다. 실험 결과 기존 방법의 문제점들을 모두 극복할 수 있었을 뿐 아니라 기존에 비해 계산량의 큰 증가 없이 향상된 결과를 얻을 수 있었다.

Keywords