• 제목/요약/키워드: optimal control parameter

검색결과 501건 처리시간 0.029초

로봇 비젼 제어기법에 사용된 카메라의 최적 배치에 대한 실험적 연구 (An Experimental Study on the Optimal Arrangement of Cameras Used for the Robot's Vision Control Scheme)

  • 민관웅;장완식
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.15-25
    • /
    • 2010
  • The objective of this study is to investigate the optimal arrangement of cameras used for the robot's vision control scheme. The used robot's vision control scheme involves two estimation models, which are the parameter estimation and robot's joint angle estimation models. In order to perform this study, robot's working region is divided into three work spaces such as left, central and right spaces. Also, cameras are positioned on circular arcs with radius of 1.5m, 2.0m and 2.5m. Seven cameras are placed on each circular arc. For the experiment, nine cases of camera arrangement are selected in each robot's work space, and each case uses three cameras. Six parameters are estimated for each camera using the developed parameter estimation model in order to show the suitability of the vision system model in nine cases of each robot's work space. Finally, the robot's joint angles are estimated using the joint angle estimation model according to the arrangement of cameras for robot's point-position control. Thus, the effect of camera arrangement used for the robot's vision control scheme is shown for robot's point-position control experimentally.

P.W.R. 원자로의 부하추종제어 (Load Following Control of Pressurized Water Reactor)

  • 이범;박영환
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.221-225
    • /
    • 2008
  • This paper presents a self-tuning controller for pressurized water reactor (P.W.R.). This self-tuning controller includes two substantial steps, such as parameter identification and control-law building in each cycle. Extended least square algorithm is used for parameter identification, Kalman filter is used for state estimation, and discrete Riccati equation is used for optimal control. Effectiveness of this algorithm is shown through computer simulation and sensitivity analysis.

PID 제어기의 최적설계에 관한 연구 (A Study on the Optimal Design of a PID Controller(II))

  • 양주호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.61-69
    • /
    • 1987
  • The PID controller is one of the most popular devices for control systems and the adjustment of its parameters has been generally accomplished by semi-empirical rules and has been considered only in the view of improvement of the control performance. But in modern control theory, a quadratic form is introduced as a criterion function which considers not only to improve quality of control but also to save energy required for the control. In this paper, authors propose a method of the parameter adjustment of the PID controller by means of maximum principle minimizing the quadratic criterion function and establish a link between the conventional parameter adjustment method and the technique of the modern optimal control theory in the design of a PID controller.

  • PDF

생산설비의 유지보수서비스와 제품의 불량률을 고려한 최적 생산주기 연구 (Determining an Optimal Production Time for EPQ Model with Preventive Maintenance and Defective Rate)

  • 김미경;박민재
    • 품질경영학회지
    • /
    • 제47권1호
    • /
    • pp.87-96
    • /
    • 2019
  • Purpose: The purpose of this paper is to determine an optimal production time for economic production quantity model with preventive maintenance and random defective rate as the function of a machinery deteriorates. Methods: If a machinery shifts from "in-control" state to "out-of-control" state, a proportion of defective items being produced increases. It is assumed that time to state shift is a random variable and follows an arbitrary distribution. The elapsed time until process shift decreases stochastically as a production cycle repeats and quasi-renewal process is used to implement for production facilities to deteriorate. Results: When the exponential parameter for exponential distribution increases, the optimal production time increases. When Weibull distribution is considered, the optimal production time is closely affected by the shape parameter of Weibull distribution. Conclusion: A mathematical model is suggested to find optimal production time and optimal number of production cycles and numerical examples are implemented to validate the patterns for changes of optimal times under different parameters assumptions. The real application is implemented using the proposed approach.

로보트 매니퓰레이터에 대한 적응 최소시간 최적제어 (Adaptive minimum-time optimal control of robot manipulator)

  • 정경훈;박정일;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.258-262
    • /
    • 1990
  • Several optimum control algorithms have been proposed to minimize the robot cycle time by velocity scheduling. Most of these algorithms assume that the dynamic and kinematic characteristics of a manipulator are fixed. This paper presents the study of a minimum-time optimum control for robotic manipulators considering parameter changes. A complete set of solutions for parameter identification of the robot dynamics has been developed. The minimum-time control algorithm has been revised to be updated using estimated parameters from measurements.

  • PDF

Fuzzy Linear Parameter Varying Modeling and Control of an Anti-Air Missile

  • Mehrabian, Ali Reza;Hashemi, Seyed Vahid
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.324-328
    • /
    • 2007
  • An analytical framework for fuzzy modeling and control of nonlinear systems using a set of linear models is presented. Fuzzy clustering is applied on the aerodynamic coefficients of a missile to obtain an optimal number of rules in a Tagaki-Sugeno fuzzy rule-set. Next, the obtained membership functions and rule-sets are applied to a set of linear optimal controllers towards extraction of a global controller. Reported simulations demonstrate the performance, stability, and robustness of the controller.

최적 슬라이딩모드 제어에 의한 영구자석 등기전동기의 위치제어 (The Position Control of PMSM using Optimal Sliding-mode Control)

  • 윤병도;김윤호;정재륜;이병송;김수열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.145-147
    • /
    • 1993
  • This paper described an optimal control technique for position control of an inverter-fed PMSM drive. A control system of PM machine for position, speed and current control based on optimal sliding mode control system is discussed. This is an effective means to keep a system insensitive to parameter variation, disturbance and chattering reduction. The main purpose of the control is to improve the dynamic response of the PMSM with the load of the inertial plant. The optimal sliding mode control strategy is analyzed and the performance is investigated by the computer simulation using actual parameters of a drive system, Simulation results are given and discussed.

  • PDF

끝단이 탄성 지지된 강체판의 최적진동제어 (Optimal Vibration Control of Rigid Plate Elastically Supported at the Edges)

  • 이성기;윤신일;한상보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.828-833
    • /
    • 2003
  • Rigid plate elastically supported at the edges is modeled and the performance of the optimal vibration control under sinusoidal excitation is tested. The controller based on the linear quadratic regulator with output feedback is designed to control the multi-degree of freedom vibration. Relative weighting parameters are considered as design constraints to determine the limitation of maximum control force and state parameters. Control force calculated by proportional output feedback of the displacement and velocity is used to suppress the vibration induced by the sinusoidal external force. The active vibration control of vibrating plate by the LQR controller is examined through the numerical simulations that show the effectiveness of optimal control scheme on the three degrees of freedom structure.

  • PDF

Optimal design of wind-induced vibration control of tall buildings and high-rise structures

  • Li, Qiusheng;Cao, Hong;Li, Guiqing;Li, Shujing;Liu, Dikai
    • Wind and Structures
    • /
    • 제2권1호
    • /
    • pp.69-83
    • /
    • 1999
  • The most common used control device on tall buildings and high-rise structures is active and passive tuned mass damper (ATMD and TMD). The major advantages of ATMD and TMD are discussed. The existing installations of various passive/active control devices on real structures are listed. A set of parameter optimization methods is proposed to determine optimal parameters of passive tuned mass dampers under wind excitation. Simplified formulas for determining the optimal parameters are proposed so that the design of a TMD can be carried out easily. Optimal design of wind-induced vibration control of frame structures is investigated. A thirty-story tall building is used as an example to demonstrate the procedure and to verify the efficiency of ATMD and TMD with the optimal parameters.

하이브리드시스템 모델링 기반 발전기 전력시스템 안정화장치 정수선정 기법 (Parameter Selection Method for Power System Stabilizer of a Power Plant based on Hybrid System Modeling)

  • 백승묵
    • 전기학회논문지
    • /
    • 제63권7호
    • /
    • pp.883-888
    • /
    • 2014
  • The paper describes the parameter tuning of power system stabilizer (PSS) for a power plant based on hybrid system modeling. The existing tuning method based on bode plot and root locus is well applied to keep power system stable. However, due to linearization of power system and an assumption that the parameter ratio of the lead-lag compensator in PSS is fixed, the results cannot guarantee the optimal performances to damp out low-frequency oscillation. Therefore, in this paper, hybrid system modeling, which has a DAIS (differential-algebraic-impusive-switched) structure, is applied to conduct nonlinear modeling for power system and find optimal parameter set of the PSS. The performances of the proposed method are carried out by time domain simulation with a single machine connected to infinite bus (SMIB) system.