• Title/Summary/Keyword: optimal compromise solution

Search Result 23, Processing Time 0.029 seconds

Interactive Fuzzy Multiobjective Decision-Making with Imprecise Goals (모호한 목표를 가진 대화형 퍼지 다목적 의사결정)

  • ;;Hong, S. L.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.67-78
    • /
    • 1992
  • MODM (multiobjective decision-making) problem is very complex system for the analyst. The problem is more complex if the goals of each of the objective functions are expressed imprecisely. It requires suitable MODM method to deal with imprecisions. Therefore, we present a new interactive fuzzy decision making method for solving multiobjective nonlinear programming problems by assuming that the decision maker (DM) has imprecise goals that assume fuzzy linguistic variable for each of the objective functions. The imprecise goals of the DM are quantified by eliciting corresponding membership functions through the interactive with the DM out of six membership functions. After determining membership functions, in order to generate the compromise or satisficing solution which is .lambda.-pareto optimal, .lambda.-max problem is solved. The higher degree of membership is chosen to satisfy imprecise goals of all objective functions by combining the membership functions. Then, the values are the compromise or satisficing solution. On the basis of the proposed method, and interactive computer programming is written to implement man-machine interactive procedures. Our programming is a revised version of sequential unconstrained minimization technique. Finally, a numerical example illustrates various aspects of the results developed in this paper.

  • PDF

A New Approach for Forest Management Planning : Fuzzy Multiobjective Linear Programming (삼림경영계획(森林經營計劃)을 위한 새로운 접근법(接近法) : 퍼지 다목표선형계획법(多目標線型計劃法))

  • Woo, Jong Choon
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.271-279
    • /
    • 1994
  • This paper descbibes a fuzzy multiobjective linear programming, which is a relatively new approach in forestry in solving forest management problems. At first, the fuzzy set theory is explained briefly and the fuzzy linear programming(FLP) and the fuzzy multiobjective linear programming(FMLP) are introduced conceptionally. With the information obtained from the study area in Thailand, a standard linear programming problem is formulated, and optimal solutions (present net worth) are calculated for four groups of timber price by this LP model, respectively. This LP model is reformulated to a fuzzy multiobjective linear programming model to accommodate uncertain timber values and with this FMLP model a compromise solution is attained. Optimal solutions of four objective functions for four timber price groups and the compromise solution are compared and discussed.

  • PDF

Optimizing Concurrent Spare Parts Inventory Levels for Warships Under Dynamic Conditions

  • Moon, Seongmin;Lee, Jinho
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2017
  • The inventory level of concurrent spare parts (CSP) has a significant impact on the availability of a weapon system. A failure rate function might be of particular importance in deciding the CSP inventory level. We developed a CSP optimization model which provides a compromise between purchase costs and shortage costs on the basis of the Weibull and the exponential failure rate functions, assuming that a failure occurs according to the (non-) homogeneous Poisson process. Computational experiments using the data obtained from the Korean Navy identified that, throughout the initial provisioning period, the optimization model using the exponential failure rate tended to overestimate the optimal CSP level, leading to higher purchase costs than the one using the Weibull failure rate. A Pareto optimality was conducted to find an optimal combination of these two failure rate functions as input parameters to the model, and this provides a practical solution for logistics managers.

Multi-objective optimization of printed circuit heat exchanger with airfoil fins based on the improved PSO-BP neural network and the NSGA-II algorithm

  • Jiabing Wang;Linlang Zeng;Kun Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2125-2138
    • /
    • 2023
  • The printed circuit heat exchanger (PCHE) with airfoil fins has the benefits of high compactness, high efficiency and superior heat transfer performance. A novel multi-objective optimization approach is presented to design the airfoil fin PCHE in this paper. Three optimization design variables (the vertical number, the horizontal number and the staggered number) are obtained by means of dimensionless airfoil fin arrangement parameters. And the optimization objective is to maximize the Nusselt number (Nu) and minimize the Fanning friction factor (f). Firstly, in order to investigate the impact of design variables on the thermal-hydraulic performance, a parametric study via the design of experiments is proposed. Subsequently, the relationships between three optimization design variables and two objective functions (Nu and f) are characterized by an improved particle swarm optimization-backpropagation artificial neural network. Finally, a multi-objective optimization is used to construct the Pareto optimal front, in which the non-dominated sorting genetic algorithm II is used. The comprehensive performance is found to be the best when the airfoil fins are completely staggered arrangement. And the best compromise solution based on the TOPSIS method is identified as the optimal solution, which can achieve the requirement of high heat transfer performance and low flow resistance.

Fuzzy multi-objective optimization of the laminated composite beam (복합재 적층 보의 퍼지 다목적 최적설계)

  • 이강희;구만회;이종호;홍영기;우호길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.143-148
    • /
    • 2000
  • In this article, we presents multi-objective design optimization of laminated composite beam using Fuzzy programming method. At first, the two design objectives are minimizing the structural weight and maximizing the buckling load respectively. Fuzzy multi-optimization problem can be formulated based on results of single optimizations. Due to different relative importance of design objectives, membership functions are constructed by adding exponential parameters for different objective's weights. Finite element analysis of composite beam for buckling behavior are carried by Natural mode method proposed by J.Argyris and computational time of analysis can be reduced. With this scheme, a designer can conveniently obtain a compromise optimal solution of a multi-objective optimization problem only by providing some exponential parameters corresponding to the importance of the objective functions.

  • PDF

Design Optimization of Centrifugal Pumps (원심 펌프의 최적 설계)

  • Oh, Hyoung Woo;Chung, Myung Kyoon;Kim, Sang Chul;Yang, Keun Yung;Ha, Jin Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.254-261
    • /
    • 1999
  • An optimal design code for centrifugal pumps has been developed to determine geometric and fluid dynamic variables under appropriate design constraints. The optimization problem has been formulated with a nonlinear objective function to minimize one, two or all of the fluid dynamic losses, the net positive suction head required and the product price of a pump stage depending on the weighting factors selected as the design compromise. The optimal solution Is obtained by means of the Hooke and Jeeves direct search method. The performance analysis Is based on the mean streamline analysis using the present state-of-the-art loss correlations. The optimized efficiency and design variables of centrifugal pumps are presented in this paper as a function of non-dimensional specific speed in the range, $0.5{\leq}N$, ${\leq}1.3$. The diagrams presented herein can be used efficiently in the preliminary design phase of centrifugal pumps.

Multi-Criteria Group Decision Making Considering the Willingness to Reject and the Indifferent Preference (거부 및 무차별 선호 조건을 고려한 다기준 그룹 의사결정)

  • Choi, Ji-Yoon;Kim, Jae-Hee;Kim, Sheung-Kown
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.57-66
    • /
    • 2012
  • The paper deals with the development of a model for group decision making under multiple criteria. The Multi-criteria group decision making (MCGDM) is the process to determine the best compromise solution in a set of competing alternatives that are evaluated by decision makers having their own preferences on conflicting objectives. For MCGDM, we propose a Mixed-Integer Programming (MIP) model that implements a revised median approach by noticing that the original median approach cannot consider the willingness to reject and the indifferent preference conditions. The proposed MIP model tries to select a common best Pareto-optimal solution by maximizing the overall desirability considering the willingness to reject and the indifferent preference that represent the tolerance measure of each decision maker. To evaluate the effectiveness of the proposed model, we compared the results of the proposed model with those of the median approach. The results showed that the proposed MIP model produces more realistic and better compromised alternative by incorporating the decision maker's willingness to reject and the indifferent preferences over each criteria.

Multi-Objective Short-Term Fixed Head Hydrothermal Scheduling Using Augmented Lagrange Hopfield Network

  • Nguyen, Thang Trung;Vo, Dieu Ngoc
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1882-1890
    • /
    • 2014
  • This paper proposes an augmented Lagrange Hopfield network (ALHN) based method for solving multi-objective short term fixed head hydrothermal scheduling problem. The main objective of the problem is to minimize both total power generation cost and emissions of $NO_x$, $SO_2$, and $CO_2$ over a scheduling period of one day while satisfying power balance, hydraulic, and generator operating limits constraints. The ALHN method is a combination of augmented Lagrange relaxation and continuous Hopfield neural network where the augmented Lagrange function is directly used as the energy function of the network. For implementation of the ALHN based method for solving the problem, ALHN is implemented for obtaining non-dominated solutions and fuzzy set theory is applied for obtaining the best compromise solution. The proposed method has been tested on different systems with different analyses and the obtained results have been compared to those from other methods available in the literature. The result comparisons have indicated that the proposed method is very efficient for solving the problem with good optimal solution and fast computational time. Therefore, the proposed ALHN can be a very favorable method for solving the multi-objective short term fixed head hydrothermal scheduling problems.

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

Thermal Design of 1 DIN Car DVD Receiver Using CAE Technique (CAE 기법을 이용한 1 DIN Car DVD Receiver 의 열설계)

  • Ryu, Ho-Chul;Kim, Kwang-Mo;Park, Jung-Eung;Kim, Wae-Yeul;Lee, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1231-1236
    • /
    • 2004
  • In the present work, the practical thermal design process of 1 DIN car DVD receiver described. In the course of its efficient design, CAE technique was essentially used. CAE technique has reduced research period, man power and material cost but has increased research convenience, organized results and persuasive power. CAE technique helped to study parameters such as vent, fan and heat sink. Using these elements, it tried to meet optimal thermal solution. But safety standard, printed circuit board and framework mechanism should be considered as the constraint. To overcome these constraints, we tried to communicate and compromise with projectors in charge. After all, the price of those efforts has made the most competitive heat sink for heat dissipation in the 1 DIN car DVD receiver market. Moreover, we are trying to save $3 per product by removing fan. This paper is supposed to show an example of the CAE technique and help thermal designers to make electronic packaging goods.

  • PDF