Acknowledgement
This work was supported by the National Natural Science Foundation of China (No. 51476063).
References
- B.W. Brook, A. Alonso, D.A. Meneley, J. Misak, T. Blees, J.B. van Erp, Why nuclear energy is sustainable and has to be part of the energy mix, Sustain.Mater. Technol 1-2 (2014) 8-16.
- D.O.E. US, A technology roadmap for generation IV nuclear energy systems, in: Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002, pp. 48-52.
- N. Bartel, M. Chen, V.P. Utgikar, X. Sun, I.H. Kim, R. Christensen, P. Sabharwall, Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors, Ann. Nucl. Energy 81 (2015) 143-149. https://doi.org/10.1016/j.anucene.2015.03.029
- X. Li, R. Le Pierres, S.J. Dewson, Heat exchangers for the next generation of nuclear reactors, in: International Congress on Advances in Nuclear Power Plants (ICAPP) 2006 , Reno, Nevada, USA, June 4-8, 2006.
- S.K. Mylavarapu, X. Sun, R.N. Christensen, R.R. Unocic, R.E. Glosup, M.W. Patterson, Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers, Nucl. Eng. Des. 249 (2012) 49-56. https://doi.org/10.1016/j.nucengdes.2011.08.043
- L. Chai, S.A. Tassou, A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles, Therm. Sci. Eng. Prog. 18 (2020), 100543.
- T. Ma, F. Xin, L. Li, X.Y. Xu, Y.T. Chen, Q.W. Wang, Effect of fin-endwall fillet on thermal hydraulic performance of airfoil printed circuit heat exchanger, Appl. Therm. Eng. 89 (2015) 1087-1095. https://doi.org/10.1016/j.applthermaleng.2015.04.022
- S.H. Yoon, H.C. No, G.B. Kang, Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs, Nucl. Eng. Des. 270 (2014) 334-343. https://doi.org/10.1016/j.nucengdes.2014.01.006
- G. Liao, Z. Li, F. Zhang, L. Liu, E. Jiaqiang, A review on the thermal-hydraulic performance and optimization of compact heat exchangers, Energies 14 (19) (2021) 6056.
- T. Ishizuka, Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO_2 loop, in: Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, NURETH-11, 2005, pp. 218-232.
- S.M. Lee, K.Y. Kim, Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations, Heat Mass Tran. 49 (2013) 1021-1028.
- S.M. Lee, K.Y. Kim, A parametric study of the thermal-hydraulic performance of a zigzag printed circuit heat exchanger, Heat Tran. Eng. 35 (2014) 1192-1200. https://doi.org/10.1080/01457632.2013.870004
- T.L. Ngo, Y. Kato, K. Nikitin, N. Tsuzuki, New printed circuit heat exchanger with S-shaped fins for hot water supplier, Exp. Therm. Fluid Sci. 30 (2006) 811-819. https://doi.org/10.1016/j.expthermflusci.2006.03.010
- T.L. Ngo, Y. Kato, K. Nikitin, T. Ishizuka, Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles, Exp. Therm. Fluid Sci. 32 (2007) 560-570. https://doi.org/10.1016/j.expthermflusci.2007.06.006
- D.E. Kim, M.H. Kim, J.E. Cha, S.O. Kim, Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model, Nucl. Eng. Des. 238 (2008) 3269-3276. https://doi.org/10.1016/j.nucengdes.2008.08.002
- X. Xu, T. Ma, L. Li, M. Zeng, Y. Chen, Y. Huang, Q. Wang, Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle, Appl. Therm. Eng. 70 (2014) 867-875. https://doi.org/10.1016/j.applthermaleng.2014.05.040
- W.X. Chu, X.H. Li, T. Ma, Y.T. Chen, Q.W. Wang, Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins, Appl. Therm. Eng. 114 (2017) 1309-1318. https://doi.org/10.1016/j.applthermaleng.2016.11.187
- F. Chen, L. Zhang, X. Huai, J. Li, H. Zhang, Z. Liu, Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil, Nucl. Eng. Des. 315 (2017) 42-50. https://doi.org/10.1016/j.nucengdes.2017.02.014
- C.Y. Zhu, Y. Guo, H.Q. Yang, B. Ding, X.Y. Duan, Investigation of the flow and heat transfer characteristics of helium gas in printed circuit heat exchangers with asymmetrical airfoil fins, Appl. Therm. Eng. 186 (2021), 116478.
- S. Soleimani, S. Eckels, Multi-objective optimization of 3D micro-fins using NSGA-II, Int. J. Heat Mass Tran. 197 (2022), 123315.
- K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182-197. https://doi.org/10.1109/4235.996017
- J. Moore, Application of Particle Swarm to Multiobjective Optimization, Technical Report, 1999.
- S. Mirjalili, P. Jangir, S. Saremi, Multi-objective ant lion optimizer: a multiobjective optimization algorithm for solving engineering problems, Appl. Intell. 46 (2017) 79-95. https://doi.org/10.1007/s10489-016-0825-8
- S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl. 27 (2016) 1053-1073.
- Z. Cheng, Z. Wang, X. Sun, T. Fu, Multi-objective optimization of self-excited oscillation heat exchange tube based on multiple concepts, Appl. Therm. Eng. 197 (2021), 117414.
- H. Xu, C. Duan, H. Ding, W. Li, Y. Zhang, G. Hong, H. Gong, The optimization for the straight-channel PCHE size for supercritical CO2 Brayton cycle, Nucl. Eng. Technol. 53 (6) (2021) 1786-1795. https://doi.org/10.1016/j.net.2020.12.002
- S.M. Lee, K.Y. Kim, Optimization of zigzag flow channels of a printed circuit heat exchanger for nuclear power plant application, J. Nucl. Sci. Technol. 49 (2012) 343-351. https://doi.org/10.1080/00223131.2012.660012
- S.M. Lee, K.Y. Kim, Multi-objective optimization of arc-shaped ribs in the channels of a printed circuit heat exchanger, Int. J. Therm. Sci. 94 (2015) 1-8. https://doi.org/10.1016/j.ijthermalsci.2015.02.006
- S.M. Lee, K.Y. Kim, S.W. Kim, Multi-objective optimization of a double-faced type printed circuit heat exchanger, Appl. Therm. Eng. 60 (2013) 44-50. https://doi.org/10.1016/j.applthermaleng.2013.06.039
- Z.H. Rao, T.C. Xue, K.X. Huang, S.M. Liao, Multi-objective optimization of supercritical carbon dioxide recompression Brayton cycle considering printed circuit recuperator design, Energy Convers. Manag. 201 (2019), 112094.
- N.D. Lagaros, M. Papadrakakis, Learning improvement of neural networks used in structural optimization, Adv. Eng. Software 35 (2004) 9-25. https://doi.org/10.1016/S0965-9978(03)00112-1
- K. Ermis, ANN modeling of compact heat exchangers, Int. J. Energy Res. 32 (2008) 581-594. https://doi.org/10.1002/er.1380
- A. Ridluan, M. Manic, A. Tokuhiro, EBaLM-THP-A neural network thermohydraulic prediction model of advanced nuclear system components, Nucl. Eng. Des. 239 (2009) 308-319. https://doi.org/10.1016/j.nucengdes.2008.10.027
- A. Pacheco-Vega, M. Sen, K. Yang, R.L. McClain, Neural network analysis of fin-tube refrigerating heat exchanger with limited experimental data, Int. J. Heat Mass Tran. 44 (2001) 763-770. https://doi.org/10.1016/S0017-9310(00)00139-3
- R.J. Schalkoff, Artificial Neural Networks, McGraw-Hill Higher Education, 1997.
- T. Ma, M.J. Li, J.L. Xu, F. Cao, Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant, Energy 175 (2019) 123-138. https://doi.org/10.1016/j.energy.2019.03.082
- F. Jin, D. Chen, L. Hu, Y. Huang, S. Bu, Optimization of zigzag parameters in printed circuit heat exchanger for supercritical CO2 Brayton cycle based on multi-objective genetic algorithm, Energy Convers. Manag. 270 (2022), 116243.
- Y. Lee, S.H. Oh, M.W. Kim, The effect of initial weights on premature saturation in back-propagation learning, in: IJCNN-91-Seattle International Joint Conference on Neural Networks, vol. 1, IEEE, 1991, pp. 765-770.
- J.R. Zhang, J. Zhang, T.M. Lok, M.R. Lyu, A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training, Appl. Math. Comput. 185 (2007) 1026-1037.
- J. Hu, X. Zeng, A hybrid PSO-BP algorithm and its application, in: 2010 Sixth International Conference on Natural Computation, vol. 5, IEEE, 2010, pp. 2520-2523.
- J. Ren, S. Yang, An improved PSO-BP network model, in: 2010 Third International Symposium on Information Science and Engineering, IEEE, 2010, pp. 426-429.
- Y.J. Lai, T.Y. Liu, C.L. Hwang, TOPSIS for MODM, Eur. J. Oper. Res. 76 (1994) 486-500. https://doi.org/10.1016/0377-2217(94)90282-8
- C. Wang, R. Ballinger, P. Stahle, E. Demetri, M. Koronowski, Design of a power conversion system for an indirect cycle, helium cooled pebble bed reactor system, in: Proceedings of the First International Topical Meeting on High Temperature Reactors Technology (HTR-2002), Petten, Netherlands, April 22-24, 2002.
- F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (1994) 1598-1605. https://doi.org/10.2514/3.12149
- X. Cui, J. Guo, X. Huai, K. Cheng, H. Zhang, M. Xiang, Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2, Int. J. Heat Mass Tran. 121 (2018) 354-366. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.015
- S.D. Marshall, B. Li, R. Arayanarakool, P. Seng Lee, L. Balasubramaniam, P.C. Chen, Heat exchanger improvement via curved microfluidic channels: impacts of cross-sectional geometry and dean vortex strength, J. Heat Tran. 140 (2018), 011801.
- S.R. Pidaparti, M.H. Anderson, D. Ranjan, Experimental investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for supercritical CO2 power cycles, Exp. Therm. Fluid Sci. 106 (2019) 119-129. https://doi.org/10.1016/j.expthermflusci.2019.04.025
- B. Durakovic, Design of experiments application, concepts, examples: state of the art, Period. Eng. Nat. Sci. 5 (2017) 421-439.
- D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, nature 323 (1986) 533-536. https://doi.org/10.1038/323533a0
- I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application, J. Microbiol. Methods 43 (2000) 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3
- J. Li, J.H. Cheng, J.Y. Shi, F. Huang, Brief introduction of back propagation (BP) neural network algorithm and its improvement, in: Advances in Computer Science and Information Engineering, Springer, 2012, pp. 553-558.
- B. Karlik, A.V. Olgac, Performance analysis of various activation functions in generalized MLP architectures of neural networks, Int. J. Artif. Intell. Expet. Syst. 1 (2011) 111-122.
- A. Ranganathan, The levenberg-marquardt algorithm, Tutoral on LM algorithm 11 (2004) 101-110.
- D. Chicco, M.J. Warrens, G. Jurman, The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ. Comput. Sci. 7 (2021) e623.
- J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN'95-International Conference on Neural Networks, vol. 4, IEEE, 1995, pp. 1942-1948.
- R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), IEEE, 2000, pp. 84-88.
- K. Hareesh, K.V. Nalina Pramod, N.K. Linu Husain, K.B. Binoy, R. Dipin Kumar, N.K. Sreejith, Influence of process parameters of wire EDM on surface finish of Ti6Al4V, Mater. Today Proc. 47 (2021) 5017-5023. https://doi.org/10.1016/j.matpr.2021.04.590
- F. Calignano, D. Manfredi, E. Ambrosio, L. Iuliano, P. Fino, Influence of process parameters on surface roughness of aluminum parts produced by DMLS, Int. J. Adv. Manuf. Technol. 67 (2013) 2743-2751. https://doi.org/10.1007/s00170-012-4688-9
- D. Xu, Z. Hui, Y. Liu, G. Chen, Morphing control of a new bionic morphing UAV with deep reinforcement learning, Aero. Sci. Technol. 92 (2019) 232-243. https://doi.org/10.1016/j.ast.2019.05.058