• Title/Summary/Keyword: optical chip

Search Result 372, Processing Time 0.027 seconds

Development, Validation, and Application of a Portable SPR Biosensor for the Direct Detection of Insecticide Residues

  • Yang, Gil-Mo;Cho, Nam-Hong
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1038-1046
    • /
    • 2008
  • This study was carried out to develop a small-sized biosensor based on surface plasmon resonance (SPR) for the rapid identification of insecticide residues for food safety. The SPR biosensor module consists of a single 770 nm-light emitting diodes (LED) light source, several optical lenses for transferring light, a hemisphere sensor chip, photo detector, A/D converter, power source, and software for signal processing using a computer. Except for the computer, the size and weight of the sensor module are 150 (L)$\times$70 (W)$\times$120 (H) mm and 828 g, respectively. Validation and application procedures were designed to assess refractive index analysis, affinity properties, sensitivity, linearity, limits of detection, and robustness which includes an analysis of baseline stability and reproducibility of ligand immobilization using carbamate (carbofuran and carbaryl) and organophosphate (cadusafos, ethoprofos, and chlorpyrifos) insecticide residues. With direct binding analysis, insecticide residues were detected at less than the minimum 0.01 ppm and analyzed in less than 100 sec with a good linear relationship. Based on these results, we find that the binding interaction with active target groups in enzymes using the miniaturized SPR biosensor could detect low concentrations which satisfy the maximum residue limits for pesticide tolerance in Korea, Japan, and the USA.

Characteristics of pre-extracted hemicelluloses from Korean mixed wood by hot water and alkali solution and its effect on handsheet properties (열수 및 알칼리 용액을 이용하여 국산 목재 칩으로부터 선추출한 헤미셀룰로오스의 특성과 이에 따른 수초지 물성 변화)

  • Seo, Dong-Il;Lee, Sang-Hoon;Sim, Kyu-Jeong;Lee, Hak-Lae;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.60-67
    • /
    • 2011
  • Hemicelluloses pre-extracted from Korean mixed wood chip were investigated as a wet-end additive. Hemicelluloses dissolved in hot water and alkali solution were isolated by ethyl alcohol precipitation from pre-extractives. They showed molecular weight of 9,000 ~ 27,000 g/mol as revealed by size exclusion chromatography. The reduction of molecular weight through hot water extraction was caused by autohydrolysis. Chemical composition of the hemicelluloses were analyzed with high-performance liquid chromatography and UV-Vis spectroscopy. As the surface charge of isolated hemicelluloses were negative, the adsorption of hemicelluloses onto softwood unbleached kraft pulp fiber was promoted by poly-DADMAC. The physical properties of handsheets increased as the molecular weight of hemicellulose increased. On the other hands, the optical property decreased with hemicellulose adsorption.

Pattern Partitioning and Decision Method in the Semiconductor Chip Marking Inspection (반도체 부품 마크 미세 결함 검사를 위한 패턴 영역 분할 및 인식 방법)

  • Zhang, Yuting;Lee, Jung-Seob;Joo, Hyo-Nam;Kim, Joon-Seek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.913-917
    • /
    • 2010
  • To inspect the defects of printed markings on the surface of IC package, the OCV (Optical Character Verification) method based on NCC (Normalized Correlation Coefficient) pattern matching is widely used. In order to detect the micro pattern defects appearing on the small portion of the markings, a Partitioned NCC pattern matching method was proposed to overcome the limitation of the NCC pattern matching. In this method, the reference pattern is first partitioned into several blocks and the NCC values are computed and are combined in these small partitioned blocks, rather than just using the NCC value for the whole reference pattern. In this paper, we proposed a method to decide the proper number of partition blocks and a method to inspect and combine the NCC values of each partitioned block to identify the defective markings.

An Embedded FPGA Implementation for a Cameralink Interface (카메라링크 접속을 위한 임베디드 FPGA의 구현)

  • Lee, Chang-Su
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.122-128
    • /
    • 2011
  • Although conventional analog linescan cameras are used widely, high-speed, high-resolution Cameralink standard will lead the area of frame grabber industry such as factory automation. In this paper, we are developing embedded frame grabber testbed without PC which will give an another solution to image processing applications. Therefore, we designed hardware schematics and programmed FPGA device with VHDL in order to interface Cameralink standard linescan CCD camera. In the future, our embedded on-chip controller could be applied to various image processing systems such as medical imaging, especially optical coherence tomography, machine vision and industrial electronics.

Design and fabrication of microgripper using thermal actuator and SU-8 (열 구동 엑츄에이터와 SU-8을 이용한 마이크로 그리퍼 설계 및 제조)

  • Jung, Seoung-Ho;Park, Joon-Shik;Lee, Min-Ho;Park, Sang-Il;Lee, In-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1613-1616
    • /
    • 2007
  • A microgripper using thermal actuator and SU-8 polymer was designed and fabricated to manipulate cells and microparts. A chip size of a microgripper was 3 mm ${\times}$ 5 mm. The thermally actuated microgripper consisted of two couples of hot and cold arm actuators. The high thermal expansion coefficient, 52 $ppm/^{\circ}C$, of SU-8 compared to silicon and metals, allows the actuation of the microgripper. Thickness and width of SU-8 as an end-effector were 26 ${\mu}m$ and 80 ${\mu}m$, respectively. Initial gap between left jaw and right jaw was 120 ${\mu}m$. The ANSYS program as FEM tool was introduced to analyze the thermal distribution and displacement induced by thermal actuators. $XeF_2$ gas was used for isotropic silicon dry etching process to release SU-8 end-effector. Mechanical displacements of the fabricated microgripper were measured by optical microscopy in the range of input voltage from 0 V to 2.5 V. The maximum displacement between two jaws of a microgripper Type OG 1_1 was 22.4 ${\mu}m$ at 2.5 V.

  • PDF

Machining Characteristics of Micro Structure using Single-Crystal Diamond Tool on Cu-plated Mold (단결정 다이아몬드공구를 사용한 Cu 도금된 몰드의 미세 구조체 가공특성)

  • Kim, Chang-Eui;Jeon, Eun-chae;Je, Tae-Jin;Kang, Myung Chang
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2015
  • The optical film for light luminance improvement of BLU that is used in LCD/LED and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimizing as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Burr and chip shape were discussed with material properties and machining method.

CHARACTERISTICS OF THE BOAO 2K CCD CAMERA (보현산천문대 2K CCD 카메라의 특성)

  • PARK BYEONG-GON;CHUN MOO-YOUNG;YUK IN-SOO;SEONG HYEON-CHEOL
    • Publications of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • We present the characteristics of the 2K CCD camera at the Bohyunsan Optical Astronomy Observatory of the Korea Astronomy Observatory at the time of its development. The purpose of this paper is to support the observers who may need detailed information on the characteristics of the camera and to provide helpful information on the optimization' of a CCD camera for those who try to develop their own camera. The 2K CCD camera was optimized to have a gain of $1.8e^-/ADU$ and a read out noise of $7e^-$ from an experiment using radioactive $^{55}Fe$ X-ray source. The charge transfer efficiency was measured as 0.9999976 for serial and 0.9999942 for parallel direction, which means $0.5\%$ charge loss along the serial direction and $1.2\%$ along the parallel direction across the chip. The quantum efficiency of the camera was measured from an experiment using a homogeneous light source consisting of a halogen lamp and an integrating sphere with a monochromator. The resulting quantum efficiency of the camera peaked at the wavelength range 600-700 nm with the value of $\~0.89$.

  • PDF

A Study on Critical Depth of Cuts in Micro Grooving

  • Son, Seong-Min;Lim, Han-Seok;Paik, In-Hwan;Ahn, Jung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.239-245
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor which affects the qualities of machined parts. That is why diamond, especially monocrystal diamond which has the sharpest edge among all other materials, is widely used in micro-cutting. The majar issue is regarding the minimum (critical) depth of cut needed to obtain continuous chips during the cutting process. In this paper, the micro machinability near the critical depth of cut is investigated in micro grooving with a diamond tool. The experimental results show the characteristics of micro-cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardening nea. the critical depth of cut.

A Study on the minimizing of cutting depth in sub-micro machining (초정밀 절삭에서의 가공깊이 최소화에 관한연구)

  • 손성민;허성우;안중환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF

BCB Polymer Dielectrics for Electronic Packaging and Build-up Board Applications

  • Im, Jang-hi;Phil-Garrou;Jeff-Yang;Kaoru-Ohba;Masahiko-Kohno;Eugene-Chuang;Jung, Moon-Soo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.19-25
    • /
    • 2000
  • Dielectric polymer films produced from benzocyclobutene (BCB) formulations (CYCLOTENE* family resins) are known to possess many desirable properties for microelectronic applications; for example, low dielectric constant and dissipation factor, low moisture absorption, rapid curing on hot plate without reaction by-products, minimum shrinkage in curing process, and no Cu migration issues. Recently, BCB-based products for thick film applications have been developed, which exhibited excellent dissipation factor and dielectric constant well into the GHz range, 0.002 and 2.50, respectively. Derived from these properties, the applications are developed in: bumping/wafer level packaging, Ga/As chip ILD, optical waveguide, flat panel display, and lately in BCB-coated Cu foil for build-up board. In this paper, we review the relevant properties of BCB, then the application areas in bumping/wafer level packaging and BCB-coated Cu foil for build-up board.

  • PDF