• 제목/요약/키워드: operator-valued Feynman integral.

검색결과 16건 처리시간 0.052초

A CLASS OF THE OPERATOR-VALUED FEYNMAN INTEGRAL

  • Ahn, Byung-Moo
    • 대한수학회지
    • /
    • 제34권3호
    • /
    • pp.569-579
    • /
    • 1997
  • We investigate the existence of the operator-valued Feynman integral when a Wiener functional is given by a Fourier transform of complex Borel measure.

  • PDF

A DOMINATED CONVERGENCE THEOREM FOR THE OPERATOR-VALUED FEYNMAN INTEGRAL

  • Ahn, Byung-Moo
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.959-968
    • /
    • 2000
  • The existence of the operator-valued Feynman integral was established when a Wiener functional is given by a Fourier transform of complex Borel measure [1]. In this paper, I investigate a stability of the Feynman integral with respect to the potentials.

OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II

  • Cho, Dong Hyun
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.903-924
    • /
    • 2016
  • In the present paper, using a simple formula for the conditional expectations given a generalized conditioning function over an analogue of vector-valued Wiener space, we prove that the analytic operator-valued Feynman integrals of certain classes of functions over the space can be expressed by the conditional analytic Feynman integrals of the functions. We then provide the conditional analytic Feynman integrals of several functions which are the kernels of the analytic operator-valued Feynman integrals.

INTEGRATION STRUCTURES FOR THE OPERATOR-VALUED FEYNMAN INTEGRAL

  • Jefferies, Brian
    • 대한수학회지
    • /
    • 제38권2호
    • /
    • pp.349-363
    • /
    • 2001
  • The analytic in mass operator-valued Feynman integral is related to integration with respect to unbounded set functions formed from the semigroup obtained by analytic continuation of the heat semigroup and the spectral measure of multiplication by characteristics functions.

  • PDF

ANALYTIC OPERATOR-VALUED GENERALIZED FEYNMAN INTEGRALS ON FUNCTION SPACE

  • Chang, Seung Jun;Lee, Il Yong
    • 충청수학회지
    • /
    • 제23권1호
    • /
    • pp.37-48
    • /
    • 2010
  • In this paper we use a generalized Brownian motion process to defined an analytic operator-valued generalized Feynman integral. We then obtain explicit formulas for the analytic operatorvalued generalized Feynman integrals for functionals of the form $$F(x)=f\({\int}^T_0{\alpha}_1(t)dx(t),{\cdots},{\int}_0^T{\alpha}_n(t)dx(t)\)$$, where x is a continuous function on [0, T] and {${\alpha}_1,{\cdots},{\alpha}_n$} is an orthonormal set of functions from ($L^2_{a,b}[0,T]$, ${\parallel}{\cdot}{\parallel}_{a,b}$).

파인만 적분에 대한 소고

  • 장주섭
    • 한국수학사학회지
    • /
    • 제14권2호
    • /
    • pp.21-28
    • /
    • 2001
  • In this paper we introduce the Feynman integral which is one of the function space integrals. There are so many approaches to the Feynman integral. Here we treat tile analytic Feynman integral and the operator-valued Feynman integral.

  • PDF