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INTEGRATION STRUCTURES FOR THE
OPERATOR-VALUED FEYNMAN INTEGRAL

BRrIAN JEFFERIES

ABSTRACT. The analytic in mass operator-valued Feynman inte-
gral is related to integration with respect to unbounded set func-
tions formed from the semigroups obtained by analytic continuation
of the heat semigroup and the spectral measure of multiplication
by characteristic functions.

Introduction

The purpose of this paper is to take the word “integral” in the ex-
pression “Feynman integral” seriously. This is not to say that any other
interpretation of the “Feynman integral” should not be taken seriously
just because it might not follow the prescription outlined here. Rather,
the purpose here is to explore how a mathematical interpretation of the
idea of a “Feynman integral” might interact with the subject of integra-
tion theory that lies at the core of mathematical analysis developed in
this century. In view of the connections between functional integration
and geometry that have been intimated over the last decade, one might
expect that the key ideas of a successful integration theory of Feynman
integrals in the realm of nonrelativistic quantum physics would also ap-
ply to a mathematical treatment of functional integrals arising in, say,
“topological quantum field theory”. However, this paper make no claims
as to just what these key ideas might be. Due to the singular nature of
Feynman integrals, an alternative mathematical viewpoint is suggested
by distribution theory.

Integration theory has come to mean the integration of measurable
functions defined on a set {1 with respect to an additive set function
defined on a collection of subsets of . The distinguishing feature of
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the set functions associated with the Feynman integral of nonrelativistic
quantum mechanics is that they are unbounded on the underlying alge-
bra of cylinder sets, even if they are analytically continued via a complex
factor of time.

This was first noticed by R.H. Cameron [2] and Yu. L. Daletskii [4].
The calculation is as follows. Suppose that ¢ > 0 and C* is the collection
of all continuous functions w : [0,¢] — R. Set X (w) = w(s) for every
weCland 0 <s <t Let ¢,9 € LAR) and A € C\ {0} with R\ > 0.
Then for every cylinder set

(1) E={X0€BQ, XtIEBI:""theBﬂ,: XgEB}
with 0 < t) < --- < t, <t set

)

By6.0(E)

w2 Mag —w, 112
din+1 — _AlEagp1—amalt _AEn#n )
= Copn®F [ [ [ e R
B v By
_Azg—z3|2 _ Alzg—=gl?
e 2z=i) g T P(xg) drodzy -+ drpdTnga.

Here Cpy1 = (27(t — £,))" %2 ... (2nt;)~%2. Then 5,6, defines an
additive set function on the algebra S* generated by all cylinder sets
E of the form (1) as the times 0 < ¢; < --- < #, < t vary, the Borel
subsets By, ..., B,, B of R vary, and the indexn = 1,2,... varies. Here
additivity means that if F € §* and F ¢ S* are disjoint sets, then

Mg,qs,;z;(E UF)= #3\,¢,¢(E) + #E\,qs,w(F)-

In the limiting case with ®A = 0, the integrals (2) converge as improper
iterated integrals.

Now fix the times t1,...,%, and consider the algebra §1:-t» gener-
ated by the sets of the form (1), just as the Borel subsets By,...,B,, B
of R vary. A calculation shows that the total variation [|uf s ,lls#1. e
of p1 4, over the algebra St~ is given by

(3)

||#§\,¢,¢”St1 ----- tn

_ (2‘%)“(')") ffhp zp)le= I 0 ) dgdiny

The total variation ||p5 , .|| of w5 4. Over the whole algebra S* is nec-
essarily greater than the total variation ||,u,f\’ owllstren for any choice
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of times 0 < £, < --- < t, < t and any n = 1,2,.... Hence, if |A| > R
then either ||} 4 oIl = 00, or |4 4 ,ll = 0, the last case occurring
when either ¢ or 9 is zero almost everywhere. In the case SA # 0, the
additive set function i 4, is highly singular.

Integration with respect to unbounded set functions lies disguised in
many subjects of modern analysis. For example, if @ is the spectral
measure associated with the position operator in quantum mechanics
of a particle moving on the line and P is the spectral measure of the
momentum operator I}, then the operator-valued set function m : A x
B — Q(A)P(B) is unbounded on the algebra £ generated by products
A x B of Borel subsets of R. Let f be the Fourier-Plancherel transform
of f € L*(R). For ¢,% € L*(R), we have

(m(AxB)¢,¥) = (2r)™" lim (/ e g(y) dy) P(w) de.
e J AN n.n) BN[—n,n|

Let mg (A4 x B) = {m(A x B)¢,y) for all Borel subsets A, B of R.
The total variation ||mg | of the set function my . on the algebra £
is |mgwll = léllllwll/(27). The functions ¢ and 4 are just elements
of L2(R), so ||ma | may be infinite. Nevertheless, m-integrable func-
tions a : B2 — C correspond to bounded pseudodifferential operators
a(z, D) acting on L?(R). The subject of harmonic analysis on phase
space and the Wey! functional calculus [5] is intimately connected with
the mathematics of quantum theory.

It is worth noting in the present context that the bounded pseudodif-
ferential a(z, D) operator has two complementary representations—the
traditional one of real variable harmonic analysis via distribution theory
and another one as a bona-fide integral a(z, D) = fp; a(x, &) m(dz, df)
[9]. The same may be said of the Feynman integral in quantum mechan-
ics.

The variation of m , is finite on compact product sets, but the vari-
ation of the additive set function ,uf\, 4.y OB cylinder sets takes only the
values +00 and 0 if $A # 0. The variation of my ,; on compact subsets
of R? may be used to control the convergence of integrable functions,
an approach precluded by the singularity of the additive set functions
,uf\’ o I Section 2, analytic continuation in the parameter A from the
case A = 0 in which ,uf\’ oo 15 8 g-additive measure is used to control
the convergence of integrable functions. This connects with the analytic
in mass operator-valued Feynman integral studied by E. Nelson [18] and
R. Cameron and D. Storvick [3] and given in Section 1.



352 Brian Jefferies

The reinterpretation of the Feynman-Kac formula in terms of an in-
tegral with respect to operator-valued set functions associated with the
unperturbed semigroup is not new [13-17], [7]. A treatment of the case of
matrix semigroups is given in [20, 21]. L. Kluvdnek developed a general
integration theory [15] to treat a large class of integrals with respect to
unbounded set functions, such as conditionally summable sequences and
spectral resolutions. The integrals below connected with the analytic in
mass operator-valued Feynman integral do not quite fit into Kluvanek’s
scheme in [15], but they are closely related. As a point of orientation,
the ideas outlined in this paper combine the elements of the viewpoints
of E. Nelson [18|, R. Cameron and D. Storvick (3] and I. Kluvanek [13].
The treatment of additive functionals of Brownian motion mentioned
below is related to recent work of S. Albeverio, G. Johnson, and Z. Ma
[1]. Further connections are elaborated in the book [7]. Many of the
issues in operator theory mentioned in passing below are discussed in
greater detail in the monograph [11].

1. Operator-valued Feynman integral

Fix a positive integer d and a time ¢ > 0. Set C* = C([0,¢,R%).
Let w be Wiener measure on the space C§ of continuous functions w :
[0,#] — R? for which w(0) = 0. The analytic in mass operator-valued
Feynman integral of a function F : C* — C is defined in the following
fashion.

Suppose that for each A > 0 and £ € R, the function w r— F(A V2w +
£), w € Cf, is w-measurable and there exists an operator K%(F) €
L{L*(R%)) such that for every ¥ € L%(R?), the function

w P20+ (A 2u(t) +€), we G,

is w-integrable for almost all £ € R% and the equality
@ (SEWE = [ PO+ o0 () + O dufw)

holds for almost all £ € RY. If A — K{(F), A > 0, is the restriction
to the positive real axis of an £(L?(R%))-valued function analytic in the
region C, = {z € C: Nz > 0}, then we call the operator K*, (F) =
limy_._sy, KL(F) the analytic in mass operator-valued Feynman inte-
gral of F' with parameter —igy # 0 if the limit exists in the strong
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operator topology. Other types of limits are possible. For example, a
non-tangential limit as A — —igp, or the limit through a wedge with
apex —igy is possible.

Let A = 82/8z% + -+ 4 8? /822 be the selfadjoint Laplacian acting in
L?(R?) and set Sy () = e*2/?* for all t > 0 and A > 0. The exponential
is defined by the functional calculus for selfadjoint operators. Then for
each A > 0, the Cy-semigroup S, is given by

/2 .
© G =(5) [ riwd e

for every ¢ € L*(R?) and ¢ > 0.

Let Q(B) : L*(R?) — L*(R?) be the operator of multiplication by the
characteristic function of the Borel subset B of R®. For a bounded Borel
measurable function f, the operator of multiplication by f is written as
Q(f). The operator Q(f) is actually the integral fp, f dQ of the bounded
function f with respect to the spectral measure @ : B — Q(B).

For the cylinder set
(6) Ez{wEC"‘:w(tl)EBl,...,w(tn)EBn}
with 0 <#; < - <t, <t, set M!(FE) equal to the operator

(7) S)\(t_tn)Q(Bn)S)\(tn _tn—l)"'Q(Bl)S/\(tl)'

The algebra generated by all such cylinder sets F' as the times 0 < ¢; <
<o < tp < t, the Borel sets By, ..., B, and the positive integer n vary, is
denoted by S*. Then M! : E v M{(E) is well defined and has a unique
additive extension to the algebra &' of subsets of C*. Moreover, for each
A > 0, the additive set function M} is the restriction to S* of a unique
L{L?(R%))-valued measure defined on the o-algebra o(S*) generated by
St We call M} the (S, Q)-measure on o(S*).

To verify that such a measure exists, we write 1t in terms of the in-
tegral (4). Let f1,..., fn be bounded complex-valued Borel measurable
functions on R¥. Let 0 < ¢, < --- < t, < t be n distinct times before t.
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Set F(w) = fi(w(t1)) - fulw(t,)) for every w € Ct. Then
M(F))E)
= fc t FO Y20 4 0)9p(A™ 20 (1) + €) dw(w)

0

B fc AOTwt) +€) - faVPw(tn) + OO (8) +€) do(w)

=Cor [ [ RO 4 ) (37 2 O 2 +6)

“ongy—anl? Zlrnoeaoy)? “lmp—ey ) —leg)®
X e 2(t—tn) e Atn—tp_1) ... e 2(tg—t1) g 25 dml s d$n+1

df{nr4+1
< CanaX®F [ [ i) (oo
Rd Re
_)\|mn l—zn|2 _’\Ixﬂf‘cn—“? 7)\[1‘2—1:“2 _Mazl—Elz
X e —Tjt‘—_tyﬁ_e Win—tn_31) .. “2iz—11) e 2t d.’,l}l ---d.’l}n+1.

Here Cpy1 = (2m(t — t,))~%2 ... (27t;)~%2. On the other hand, if
¢ € L2(R?), then

([, rrmsan) o)

- ( R (Miqs)(dw)) (©

(f At Falwlt ))(M§¢>(dw)) ©
= (Sa(t = £)QU ISt — o) - QUSA 1)) (6)

— A fRd---/Rdfl(x1>--~fn<zn)

2
Ae—wzpl? Mon—2n gl Mag—aq|® Alzy—z)?

X e il e Hn~ta-1 ...g” 2hoo) e 2h o o(x) dadey - - dx,

The integral with respect to M} is to be interpreted in the sense of ap-
proximation by cylinder functions. Comparison between the expressions
above shows that

([ #1350 0.7) = (K3FY,3) = (5. K3FP)

Hence, [.. F(w)}M!(dw) = K{(F)*. The o-additive extension of M}
from 8* to 0(S*) is equal to the operator-valued measure A — K% (x4)*
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for all A € o(S?). As is customary, the unique extension is denoted,
again, by M. To check that the set function

A Ki(xa)", Acoa(SH
is actually a measure for each A > 0, inspection of (4) shows that
1K (xa) Sl

jl; . ( fc Xa(A 0+ BT 2w(t) +§)dw(w)) ¢(€) &g

= sup
llwllz<1

< s [ ([ xaO 4 90 2ule) + €0116(6) de ) dute)

Iz =1

Each semigroup Sy, A > 0, has a unique analytic extension from the
set of all positive real numbers A to the set C4 = {A € C: R > 0}.
Formula (5} is valid for all A € C, provided we take the branch of
A — A2 guch that R(A/2) > 0 on C,. Then the operator-valued
function A — M{(E), A > 0, has a unique analytic extension to C, for
each cylinder set (6). In this fashion, we obtain a family (M3)sec, of
additive operator-valued functions M? : 8* — L{L*(R%)).

Comparison with formula (2) shows that (M3} (E)$, ) = p 5.4(E)
for each cylinder set E € S*. As mentioned in the Introduction, if SA # 0
then ||u} 4 4 Il = +oc for any nonzero elements ¢ and ¥ of L(R), so the
collection

{Mi(A): A ST}

of bounded linear operators is unbounded in the operator norm. Note
here that St is the algebra generated by cylinder sets (6). Fach operator
(7) is a contraction on L*(R?) for A € C4, but the collection of all
cylinder sets (6) is only a sem:-algebra.

2. Integration

Integration with respect to the family {(M})s>o of operator-valued
measures is used to control the convergence of integrals with respect to
the set functions (M{}xec, . First we have to make precise the idea of
integrating with respect to a family of operator-valued measures.

The space L*({M%)ss0) of equivalence classes of functions integrable
with respect to each operator-valued measure Mt, A > 0, is equipped
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with a natural locally convex topology with respect to which it is a
sequentially complete lcs. The completeness is a consequence of the
operator-valued measures M! and M} having disjoint support for all
A > 0 and » > 0 such that A # v, that is, the operator-valued mea-
sures live on spaces of paths with distinet guadratic variation accord-
ing to a result of P. Lévy. The measurability of functions belonging
to L'((M?%)xs0) is precisely the scale-invariant measurability studied in
[10]. The seminorms defining the topology of L' ({M!},.¢) are given by

prosp{ [ 191081000 € R, I <1

for every ¢ € L*(R%) and A > 0.
Suppose that H(A) is the quadratic form sum of —~A/{(2)) and V.
Then

E_H()‘)? - /Ct e fot Vi{w(s) ds Mi(dw)

for all £ > 0. This is a reinterpretation of the Feynman-Kac formula
[19, Theorem X.68) in terms of operator-valued measures. The proof is
by now standard: first establish the equality for V' bounded and then
use monotone convergence for quadratic forms on the left and monotone
convergence for integrals on the right. - '

How can we integrate with respect to the operator-valued set func-
tions M! : 8 — L(L*(R?)) in the case that SA # 07 As is usual in
integration theory, one starts with simple functions, in this case, a finite
linear combination s = Z;“:l cxxg,; of characteristic functions of sets
E; € 8, for j =1,...,k. Then linearity gives

k
/;u sdMj = ZCkMi(Ek)

=1

One idea is to give the topology on the space of simple functions
s based on the algebra S* so that a net (s,)aeca of simple functions
converges to a function f if and only if it converges to f in the quasi-
complete space L ({M?},50) and the net is also Cauchy with respect to
the seminorms

[ s (aaiepia

(8) PE K¢ S > Sup
AEK 2
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as E varies over cylinder sets (6), the function ¢ varies over L?(R?) and
K varies over compact subsets of C.. Then we can define

[ a0 = lim [ 5o (48) )

s0 that the convergence is uniform in the strong operator topology as A
varies over compact subsets of C,. It follows that the operator-valued
function

(B.A) o [E £ (w) (M) (do)

is additive in E € 8 and analytic in A € C4.

For the situation of interest—quantum mechanics—A is interpreted as
—i times a mass parameter m. It is not unreasonable to expect that the
dynamics of a quantum system should exhibit continuous dependence
upon nonzero (and positive) mass. Then analytic continuation in A
from the boundary values on (iR) \ {0} to C; can be achieved by the
Poisson integral formula.

Let us look at two possibilities for going from the set C. to the
boundary 8C, = iR of C,. Let H(C..} denote the space of all functions
which are analytic in C and continuous on C; \ {0}, endowed with the
topology of uniform convergence on compact subsets of C... The space
H{C.} endowed with the topology of uniform convergence on compact
subsets of T \ {0} is written as H(C ). The two locally convex spaces
H(C,) and H(C.) have the same underlying sets, only the topologies
differ. The space H(C,.) is complete and metrisable. Although H(C, )}
is metrisable, it is not a complete locally convex space.

Of course, we could equally use A = —ém with some smaller interval
I of the mass parameter m, say, all positive real values. Then we would
look at analytic functions in C, with continuous boundary values on
~11.

We consider two types of integrability for a function f : C* — C.
[H(C,)] the function A — [ f{w){(M}¢){dw) defined above belongs to
H(C,) for each E € S and all ¢ € L*(RY);

[H(C4)] the net (s4)aca of S*-simple functions mentioned above con-
verges to f in the quasicomplete space L'({M})a>o0) and the
net is also Cauchy with respect to the seminorms pg g 4 defined
in formula (8) as E varies over cylinder sets (2), the function ¢
varies over L2(R?%) and K varies over compact subsets of C \{0}.
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We now look at the distinction between H(C.)-integrability and
H(C.)-integrability. Every H(C )-integrable function is H(C.)-integr-
able because the function

(9) ao [ 1) (ti)a)
is the uniform limit of functions

A f selw) (Mig)(dw), o€ A,
E

on compact subsets of C, \ {0}, with (s4)aca a net of simple functions.
Hence, (9) is analytic in C, and continuous on C\{0}. A few examples
of functions integrable in the above senses follow.

H(C,)-integrable functions

iy Frwe fi{w(t)) - fulw(ts)), w € C*, with f1,..., fr bounded
and Borel measurable on Re.
i) e~tfo VoXods with V € LP(RY) + L®(RY), p > d/2 for d > 3.
In Example (2), we have the representation

e-—itH(m) — f et [q VoXsds dMi
=K', (eiftlt VC’X"d'S) , A=-—im, meR, m#0,

relative to the operator H(m) = —A/(2m)+ V. Here X, : w — w(s) for
alwe Cland 0 < s <t

To check what is involved in proving H (C..)-integrability for the func-
tion i) and ii) above, the calculations are given below.

Proof Aof H(C,)-integrability. i) Let sk, : R? — C be Borel measur-

able simple functions defined for all k = 1,2,... and 7 =1....,n, such
that ||skjllec < ||fillo for all & = 1,2..., and with the p.operty that
for each z € R? and j = 1,...,n, we have s; j(z) — fi(z) as k — oo.

Then by dominated convergence (s 0 Xy ) (sgmo Xy,) — F in
LY({M!)so) as k — oc.
We need to look at the convergence in L%(R?) of

(10) L (5620 Xer) - (810 © X, ) d(ML)
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as k — oo, E varies over cylinder sets and A varies over compact subsets
of C; \ {0}. The proof of convergence for E = C* gives the idea, for
then (10} is equal to

(11) Sa(t — tn)Q(5kn)Sa(tn — tho1) - Q(sg.1)SA(t1) D

for all A € C. \ {0}. The operator of multiplication by a Borel mea-
surable function f on R? is written as Q(f). Because Q(sy ;) — Q(f;)
in the strong operator topology of £(L?(R?)) as k — oo, convergence
also holds for the topology of precompact convergence, that is, uniform
convergence on precompact sets of L2(R%). Now for 7 > 0 fixed, K a
compact subset of C; \ {0} and C a precompact subset of L2(R¢), the
set
{Si(rlg: A€ K, gC}

is a precompact subset of L?(R?} because the mapping (X, g) — Sx(7)g
is continuous from (C. \ {0}) x L2(R?) into L*(RY). It follows that (11)
converges to '

(12) S)\(t - tn)Q(fn)S/\(tn - tn—l) o Q(f])S)\(h)Cb

in L?(R") uniformly for A € K as k — oo.
Repeating the argument with C* replaced by a cylinder set E, we see
that F' is H{C,)-integrable and

(13) - FdM; = 8i(t — t)Q(f2)80(tr — tn1) - Q(f1)Sx(t1)

for all A € Cy \ {0}.
i) The argument here appears in [6], [7]. We first consider the case

of bounded continuous functions V : R? — R for any d = 1,2,.... Let
n
H tt VOX_?t/n)/ﬂ

for each n = 1,2,.... Then F, : C* — C is a uniformly bounded

function of the form i), so F, is H(C, }-integrable and from (13) we
have

n

(14) [ Fraisia) = T [ =@rms,/m) o

J=1
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for all A € C.\{0} and ¢ € L?(R%). The operator Qe *¥/") of multipli-
cation by the function e~*¥/" is just the unitary operator e #@(V)/n =
Y o(—HQ(V) ).

By the continuity of V, the continuity of paths in the sample space
C* and dominated convergence, it follows that F, — e=ifs VoXads 3
LY({M!)350) as n — 0o. We need to show that (14) converges in L2(R¢)
uniformly for X in compact subsets of C, \ {0} as n — co. The argument
with C'* replaced by a cylinder set F is similar.

Clearly, we are looking at convergence of the type of the Lie-Kato-
Trotter product formula. The infinitesimal generator of Sy is A/(2A)
for all A € C4 \ {0}. Let K be a compact subset of C; \ {0} and let
C(K,L*(R%)) be the Banach space of all continuous functions f : K —
L*(RY) with the uniform norm { f|lcc = supyeg |[f(A)[|2- Then

Sa(t+ $)F(N) = Sx()(Sa(s)F(N), for all A € K,

so the operator f — S (£)(f(:)), f € C(K, L}(R%)), defines a contrac-
tion semigroup S of bounded linear operators for each ¢ > 0. Because
the linear subspace C(K) ® L?(R?) is dense in C(K, L*(R?)), the semi-
group S is continuous at zero and its generator is the application of the
operator A/(2X) to f(A) for a dense set of functions f € C(K, L2(R%)).
But —i@Q(V) is a bounded perturbation of this generator, so appealing
to the elementary version of the Lie-Kato-Trotter product formula ap-
plied to the Banach space C(K, L?(IR%}), the operators (14) converge in
LZ(R?) uniformly for A € K as n — co. It follows that e tJo VoX«ds g
H(C, )-integrable and

(15) / e 5 VoXads gt _ ok A=itQ(Y)
Ct

for all A € C. \ {0}

Next, approximate V € L*(R?) almost everywhere by continuous
functions V, such that ||V.||cc € V|| for all € > 0. Again, convergence
in the Banach space C(K, L?(R?)) yields H(C, )-integrability and equa-
tion (15). For the general case V € LP(R?) + L>°(R%), p > d/2 for d > 3,
the selfadjoint operator Q(V) is a small perturbation of A, that is, the
operator Q(V) is relatively bounded with respect to A and the relative
bound is zero. Hence, we can approximate (V') by bounded operators
Q(V,) associated with cutoff potentials V,, = Vxyv|<n}, 7 = 1,2,...,
acting in the Banach space C{K, L?(R%)). Again, we get uniform con-
vergence in A € K and equation (13) holds. ad
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A critical part of the proof above is the condition that Q(V) is a
small perturbation of A. If this fails, it looks like we have to relax the
conditions of H{C )-integrability.

H{C,)-integrable functions

iii) et fo VoXeds with V € LY2(RY) + L (RY), d > 3.

iv) e iJo VoXads with V(z) = —c¢/|z|?, ¢ > 0 in B3,

v) ft=e " with {a)s>0 an additive functional of Brownian mo-
tion [1]. :

Proof of H(C, )-integrability. We just look at how to verify the con-
ditions [H(C.)] in the case that ¢t > 0 and the cylinder set E is equal to
the whole space C!. For all of these functionals f¢, the approximation
of | ot tdM¢ for A > 0 converges uniformly for A belonging to compact
subsets of €, by the operator version of Vitali’s convergence theorem.
The proofs of H(C, )-integrability of f! in the cases above merely re-
quire the proof of continuity of A — [, f*dMj in the strong operator
topology for all A € 9C, \ {0} and the identification of the function
A [ fEAME, X € 8C4 \ {0}, as the continuous boundary value of
the operator-valued analytic function X v [, f*dMg, X € €\ {0}
This sort of property is known from perturbation theory. Example iii)
is treated in [12, Lemma VI1.4.8b, Remark 4.9a], Example iv) in [18] and
a suitable modification of [1] gives Example v). O

More generally, Example iii} could be any measurable function V :
R? — R such that the form sum —A+¢V is bounded below for alla € R
[12, Theorem IV.3.6], for example, if V is a small (zero relative bound)
form perturbation of —A.

The functionals e~ #(VoXit/n)/" cannot converge in the topology of
H(C.) -integrable functions to e~#/o VoXsds in Example iv), otherwise
t— [ g1 Jo VoXads dM? would be a unitary group for purely imagi-
nary A. For each ¢ > 0, this is known not to be the case for sufficiently
large positive values of the mass parameter —$(A) [18]. However, to
establish that e~ifs VoX=ds ig not H(C, )-integrable, we would need to
show that it is not the limit in the seminorms (8) of any net of simple
functions, rather than just this particular sequence of approximations.
This looks hard to prove.

The space of all H(C, )-integrable functions may be given a locally
convex topology under which all Cauchy sequences converge in the lcs.
This is not possible for the space of all H(C.)-integrable functions,
because H(C4) is not itself complete.
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We can pursue an analogy here. Let X be an infinite dimensional
separable Hilbert space. Let (¥,8,u) be a o-finite measure space. A
function f: ¥ — X for which the scalar function (f,£) : t — {f(t),&) is
u-measurable for each £ € X is called

(1) Bochner integrable if [, ||f(t)]lx p(dt) < oo,
(2) Pettis integrable if [ |{f(2),€)|u(dt) < oo for ever £ € X.

In either case, we can define

| eutdn = im [ s,y pes
E E

for a suitable sequence of S-simple functions {s,) converging p-a.e.
to f. The space of Bochner integrable functions is complete with re-
spect to the norm f — [g ||/l x du, but, in general, the space of Pet-
tis integrable functions is not complete with respect to the norm f —
supey<1 Js [, €)] dps-

Nevertheless, the space of Pettis integrable functions is usually more
interesting than the space of Bochner integrable functions. For example,
singular integral operators can be associated with operator-valued Pettis
integrable functions [8]. Bochner integrable functions are associated with
integral operators with a regular kernel.

The lack of completeness of the space of H(C, )-integrable functions
is compensated by the apparent ability to represent the dynamical group
e~ #(Ho+V) with more singular perturbations V of the free Hamiltonian
Hy = A/(2m) than the case of H(C_ )-integrable functions.

As mentioned above, if the form sum —A + aV is bounded below
for all @ € R, then the functional e~?fo VoXsds j5 H(T, )-integrable.
By contrast, there seems to be a close connection between the H(Cy)-
integrability of the functional e~iJo VeXads and the sufficient condition
that A+aV is essentially selfadjoint for all @ € R. One might expect the
dynamical group e~ it{HotV} t = R to exhibit nice stability properties
under the class of perturbations V for which the multiplicative functional
e~iJa VeXads ¢ > g is H(C, )-integrable for all + > 0. To make these
observations precise requires further study.
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