• 제목/요약/키워드: open problem

검색결과 1,634건 처리시간 0.029초

초등 수학 평가를 위한 개방형 문제의 활용 결과 분석 (A Study on the Results of Use of Open-ended Problems for Evaluation in Elementary Mathematics)

  • 이대현
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제47권4호
    • /
    • pp.421-436
    • /
    • 2008
  • Mathematics assessment doesn't mean examining in the traditional sense of written examination. Mathematics assessment has to give the various information of grade and development of students as well as teaching of teachers. To achieve this purpose of assessment, we have to search the methods of assessment. This paper is aimed to develop the open-ended problems that are the alternative to traditional test, apply them to classroom and analyze the result of assessment. 4-types open-ended problems are developed by criteria of development. It is open process problem, open result problem, problem posing problem, open decision problem. 6 grade elementary students who are picked in 2 schools participated in assessment using open-ended problems. Scoring depends on the fluency, flexibility, originality The result are as follows; The rate of fluency is 2.14, The rate of flexibility is 1.30, and The rate of originality is 0.11 Furthermore, the rate of originality is very low. Problem posing problem is the highest in the flexibility and open result problem is the highest in the flexibility. Between general mathematical problem solving ability and fluency, flexibility have the positive correlation. And Pearson correlational coefficient of between general mathematical problem solving ability and fluency is 0.437 and that of between general mathematical problem solving ability and flexibility is 0.573. So I conclude that open ended problems are useful and effective in mathematics assessment.

  • PDF

The 'Open Approach' to Teaching School Mathematics

  • Becker Jerry P.;Epstein Judith
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제10권3호
    • /
    • pp.151-167
    • /
    • 2006
  • The open approach to teaching school mathematics in the United States is an outcome of the collaboration of Japanese and U. S. researchers. We examine the approach by illustrating its three aspects: 1) Open process (there is more than one way to arrive at the solution to a problem; 2) Open-ended problems (a problem can have several of many correct answers), and 3) What the Japanese call 'from problem to problem' or problem formulation (students draw on their own thinking to formulate new problems). Using our understanding of the Japanese open approach to teaching mathematics, we adapt selected methods to teach mathematics more effectively in the United States. Much of this approach is new to U. S. mathematics teachers, in that it has teachers working together in groups on lesson plans, and through a series of discussions and revisions, results in a greatly improved, effective plan. It also has teachers actively observing individual students or groups of students as they work on a problem, and then later comparing and discussing the students' work.

  • PDF

개방형 문제와 선택형 문제 해결에 나타난 학생의 추론 비교 (A Comparison of Students' Reasoning Shown in Solving Open-Ended and Multiple-Choice Problems)

  • 이명화;김선희
    • 대한수학교육학회지:학교수학
    • /
    • 제19권1호
    • /
    • pp.153-170
    • /
    • 2017
  • 본 연구는 학생들의 추론 활동이 활발할 것으로 기대되는 개방형 문제와 학생들이 익숙해하는 선택형 문제에서 학생들이 문제를 해결하면서 보이는 추론의 유형과 추론 과정이 어떠한지 분석하였다. 그리고 개방형 문제 해결에서 추론을 증진시키는 교사의 역할에 대해 알아보았다. 선택형 문제에 비해 개방형 문제 해결에서 학생들은 더 다양한 추론 유형을 나타냈고, 추론이 연쇄적으로 진행되면서 확장되는 과정을 보여주었다. 개방형 문제에서는 학생들의 개연적 추론의 한 유형인 가추가 활발하였는데, 이에 따라 교사는 격려, 촉진, 안내의 역할을 하였다. 이에 교사는 수업과 평가에서 개방형 문제를 제시하고, 학생들이 추론에 어려움을 느낄 때 적절한 발문으로 학생들의 추론이 더욱 활발해지도록 돕는 역할을 해야 한다.

넓이관련 열린 문제에 관한 문제해결 과정 분석 (Investigation of the Problem Solving in Open-Problem Related to Area)

  • 김민경
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제43권3호
    • /
    • pp.275-289
    • /
    • 2004
  • The purpose of the study is to investigate how children and preservice teachers would make a progress in solving the open-problems related to area. In knowledge-based information age, information inquiry, information construction, and problem solving are required. At the level of elementary school mathematics, area is mainly focused on the shape of polygon such as square, rectangle. However, the shape which we need to figure out at some point would not be always polygon-shape. With this perspective, many open-problems are introduced to children as well as preservice teacher. Then their responses are analyzed in terms of their logical thinking and their understanding of area. In order to make students improve their critical thinking and problem solving ability in real situation, the use of open problems could be one of the valuable methods to apply.

  • PDF

The 'Open Approach' to Teaching School Mathematics

  • Becker Jerry P.
    • 한국수학교육학회:학술대회논문집
    • /
    • 한국수학교육학회 2006년도 제37회 전국수학교육연구대회 프로시딩
    • /
    • pp.45-62
    • /
    • 2006
  • The open approach to teaching school mathematics in the United States is an outcome of the collaboration of Japanese and U.S. researchers. We examine the approach by illustrating its three aspects: open process (there is more than one way to arrive at the solution to a problem; 2) open-ended problems (a problem can have several of many correct answers), and 3) what the Japanese call 'from problem to problem' or problem formulation (students draw on their own thinking to formulate new problems). Using our understanding of the Japanese open approach to teaching mathematics, we adapt selected methods to teach mathematics more effectively in the United States. Much of this approach is new to U.S. mathematics teachers, in that it has teachers working together in groups on lesson plans, and through a series of discussions and revisions, results in a greatly improved, effective plan. It also has teachers actively observing individual students or groups of students as they work on a problem, and then later comparing and discussing the students' work.

  • PDF

개방형 문제해결학습이 초등학생들의 수학적 창의성 및 수학적 태도에 미치는 영향 (The Effects of Open-Ended Mathematical Problem Solving Learning on Mathematical Creativity and Attitudes of Elementary Students)

  • 서영민;박만구
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제35권3호
    • /
    • pp.277-293
    • /
    • 2021
  • 본 연구는 초등학생을 대상으로 개방형 문제해결학습을 진행하였을 때 학생들의 수학적 창의성과 수학적 태도에 대해 어떤 영향을 미치는지 알아보기 위한 것이다. 이를 위해 서울 시내 초등학교 6학년 학생들을 대상으로 9차시의 개방형 문제해결학습을 진행한 뒤 I-STATistics를 활용하여 사전 사후 t-검정하여 결과를 분석하였다. 연구 결과, 개방형 문제해결학습은 수학적 창의성 신장에 효과가 있었고, 특히 창의성의 하위 요소인 유창성에는 유의미한 결과가 없었지만, 융통성, 독창성 신장에 효과가 있었다. 또한, 개방형 문제해결학습은 수학적 태도 향상에 도움이 되며 특히 하위 요인 중 수학적 태도, 인정욕구, 동기 향상에 효과가 있었다. 그리고 개방형 문제해결학습에서 학생들은 다양한 반응을 공유하고 생각을 확장할 수 있었다. 연구 결과를 토대로 학교 현장에서 개방형 수학 문제해결을 활용을 위한 양질의 자료 개발 및 교사 연수를 지속할 필요가 있음을 제안하였다.

Fostering Mathematical Thinking and Creativity: The Percent Problem

  • Foong, Pui Yee
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제14권1호
    • /
    • pp.51-65
    • /
    • 2010
  • Open-ended problems can foster deeper understanding of mathematical ideas, generating creative thinking and communication in students. High-order thinking tasks such as open-ended problems involve more ambiguity and higher level of personal risks for students than they are normally exposed to in routine problems. To explore the classroom-based factors that could support or inhibit such higher-order processes, this paper also describes two cases of Singapore primary school teachers who have successfully or unsuccessfully implemented an open-ended problem in their mathematics lessons.

가족의 심리적 환경과 청소년의 자기통제력 및 친구특성이 청소년의 문제행동에 미치는 영향 (The Effects of Psychological Family Environment, Self-control and Friend Characteristics of Middle School Students on Their Problem Behaviors)

  • 남현미;옥선화
    • 대한가정학회지
    • /
    • 제39권7호
    • /
    • pp.37-58
    • /
    • 2001
  • The Purpose of this study was to examine the direct or indirect effects of psychological family environment self-control, and friends characteristics of middle school students on their problem behaviors. Data were corrected from 520 senior students of middle school (266 boys and 254 girls) who reside in Inchon. The level of problem behaviors was directly influenced positively by closeness with friends and negatively by self-control and open communication with mothers. And the level of problem behaviors was indirectly influenced positively by intrafamily conflicts and negatively by self-control, parental monitoring and open communication with parents. Self-control was the most powerful predicator of problem behaviors of middle school students. Self-control was directly influenced positively by open communication with fathers and negatively by intrafamily conflicts. Closeness with friends was directly influenced positively by parental monitoring and negatively by self-control and open communication with mothers.

  • PDF

개방형 문제를 어떻게 만들 것인가?: 두 개의 개방형 문제 제작 사례를 중심으로 (How to Pose an Open Problem? : Two Cases of Posing an Open-ended Problem by Reorganizing Given Closed Problems)

  • 도종훈
    • 한국학교수학회논문집
    • /
    • 제10권2호
    • /
    • pp.221-235
    • /
    • 2007
  • 개방형 문제는 문제의 출발 상황이나 목표 상황, 해결 방법 등이 열려 있어 학생들에게 각자의 수준에서 다양하고 새로운 산출물을 생산하는 경험을 제공할 수 있다. 교사는 여러 가지 유형의 개방형 문제를 답을 구하거나 증명하는 문제의 형태로 제작하여 활용할 필요가 있다. 개방형 문제 제작과 활용을 위해 먼저 고려해야 할 점은 어떤 소재를 가지고 어떤 절차와 방법으로 개방형 문제를 만들 것인가 하는 점이다. 학생들에게 지나치게 생소하거나 과도한 배경지식을 필요로 하는 내용보다는 학생들에게 친숙하여 접근이 용이한 내용이나 소재 및 대다수의 교사들이 쉽게 활용할 수 있는 제작 방법과 절차에 대한 논의가 구체적인 예와 함께 이루어질 필요가 있다. 이에 본 논문에서는 교과서 등에 제시되어 있어 이미 알려진 문제를 재구성하여 개방형 문제를 제작하는 방법과 절차를 예시 설명하고, 예시 개방형 문제에 대한 학생들의 반응을 분석하며, 이를 토대로 개방형 문제가 지니는 수학 교육적 의의에 대하여 논의한다.

  • PDF

Software Similarity Measurement based on Dependency Graph using Harmony Search

  • Yun, Ho Yeong;Joe, Yong Joon;Jung, Byung Ok;Shin, Dong myung;Bahng, Hyo Keun
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권12호
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, we attempt to prevent certain cases by tracing a history and making genogram about open source software and its modification using similarity of source code. There are many areas which use open source software actively and widely, and open source software contributes their development. However, there are many unconscious cases like ignoring license or intellectual properties infringe which can lead litigation. To prevent such situation, we analyze source code similarity using program dependence graph which resembles subgraph isomorphism problem, a typical NP-complete problem. To solve subgraph isomorphism problem, we utilized harmony search of metaheuristic algorithm and compared its result with a genetic algorithm. For the future works, we represent open source software as program dependence graph and analyze their similarity.