• Title/Summary/Keyword: object-based 3-D model

Search Result 332, Processing Time 0.029 seconds

A New Matching Strategy for SNI-based 3-D Object Recognition (면 법선 영상 기반형 3차원 물체인식에서의 새로운 매칭 기법)

  • 박종훈;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.59-69
    • /
    • 1993
  • In this paper, a new matching strategy for 3-D object recognition, based on the Surface Normal Images (SNIs), is proposed. The matching strategy using the similarity decision function [9,10] lost the efficiency and the reliability of matching, because all features of models within model base must be compared with the scene object features, and the weights of the attributes of features is given by heuristic manner. However, the proposed matching strategy can solve these problems by using a new approach. In the approach, by searching the model base, a model object whose features are fully matched with the features of sceme object is selected. In this paper, the model base is constructed for the total 26 objects, and systhetic and real range images are used in the test of the system operation. Experimental result is performed to show the possibility that this strategy can be effectively used for the SNI based recognition.

  • PDF

Construction of LiDAR Dataset for Autonomous Driving Considering Domestic Environments and Design of Effective 3D Object Detection Model (국내 주행환경을 고려한 자율주행 라이다 데이터 셋 구축 및 효과적인 3D 객체 검출 모델 설계)

  • Jin-Hee Lee;Jae-Keun Lee;Joohyun Lee;Je-Seok Kim;Soon Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.203-208
    • /
    • 2023
  • Recently, with the growing interest in the field of autonomous driving, many researchers have been focusing on developing autonomous driving software platforms. In particular, we have concentrated on developing 3D object detection models that can improve real-time performance. In this paper, we introduce a self-constructed 3D LiDAR dataset specific to domestic environments and propose a VariFocal-based CenterPoint for the 3D object detection model, with improved performance over the previous models. Furthermore, we present experimental results comparing the performance of the 3D object detection modules using our self-built and public dataset. As the results show, our model, which was trained on a large amount of self-constructed dataset, successfully solves the issue of failing to detect large vehicles and small objects such as motorcycles and pedestrians, which the previous models had difficulty detecting. Consequently, the proposed model shows a performance improvement of about 1.0 mAP over the previous model.

Object Recognition Using Planar Surface Segmentation and Stereo Vision

  • Kim, Do-Wan;Kim, Sung-Il;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1920-1925
    • /
    • 2004
  • This paper describes a new method for 3D object recognition which used surface segment-based stereo vision. The position and orientation of an objects is identified accurately enabling a robot to pick up, even though the objects are multiple and partially occluded. The stereo vision is used to get the 3D information as 3D sensing, and CAD model with its post processing is used for building models. Matching is initially performed using the model and object features, and calculate roughly the object's position and orientation. Though the fine adjustment step, the accuracy of the position and orientation are improved.

  • PDF

Model-based 3-D object recognition using hopfield neural network (Hopfield 신경회로망을 이용한 모델 기반형 3차원 물체 인식)

  • 정우상;송호근;김태은;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.60-72
    • /
    • 1996
  • In this paper, a enw model-base three-dimensional (3-D) object recognition mehtod using hopfield network is proposed. To minimize deformation of feature values on 3-D rotation, we select 3-D shape features and 3-D relational features which have rotational invariant characteristics. Then these feature values are normalized to have scale invariant characteristics, also. The input features are matched with model features by optimization process of hopjfield network in the form of two dimensional arrayed neurons. Experimental results on object classification and object matching with the 3-D rotated, scale changed, an dpartial oculued objects show good performance of proposed method.

  • PDF

Efficient 3D Scene Labeling using Object Detectors & Location Prior Maps (물체 탐지기와 위치 사전 확률 지도를 이용한 효율적인 3차원 장면 레이블링)

  • Kim, Joo-Hee;Kim, In-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.996-1002
    • /
    • 2015
  • In this paper, we present an effective system for the 3D scene labeling of objects from RGB-D videos. Our system uses a Markov Random Field (MRF) over a voxel representation of the 3D scene. In order to estimate the correct label of each voxel, the probabilistic graphical model integrates both scores from sliding window-based object detectors and also from object location prior maps. Both the object detectors and the location prior maps are pre-trained from manually labeled RGB-D images. Additionally, the model integrates the scores from considering the geometric constraints between adjacent voxels in the label estimation. We show excellent experimental results for the RGB-D Scenes Dataset built by the University of Washington, in which each indoor scene contains tabletop objects.

Development of Unique Naming Algorithm for 3D Straight Bridge Model Using Object Identification (3차원 직선교 모델 객체의 인식을 통한 고유 명칭부여 알고리즘 개발)

  • Park, Junwon;Park, Sang Il;Kim, Bong-Geun;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.557-564
    • /
    • 2014
  • In this study, we present an algorithm that conducts an unique naming process for the bridge object through the solid object identification focused on 3D straight bridge model. For the recognition of 3D objects, the numerical algorithm utilizes centroid point, and solid object on the local coordination system. It classifies the object feature set by classifying the objects and members based on the bridge direction. By doing so, unique names, which contain the information about span, members and order of the object, were determined and the suitability of this naming algorithm was examined through a truss bridge model and a bridge model with different coordinate systems. Also, the naming process based on the object feature set was carried out for the real 3D bridge model and then was applied to the module on local server and mobile device for real bridge inspection work. From the comparison of the developed naming algorithm based on object identification and the conventional one based on field inspection, it was shown that the conventional field inspection work can be effectively improved.

Direct construction of a four-dimensional mesh model from a three-dimensional object with continuous rigid body movement

  • Otomo, Ikuru;Onosato, Masahiko;Tanaka, Fumiki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahedralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.

Development of Pre-construction Verification System using AR-based Drawings Object (도면증강 객체기반의 건설공사 사전 시공검증시스템 개발 연구)

  • Kim, Hyeonsung;Kang, Leenseok
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.93-101
    • /
    • 2020
  • Recently, as a BIM-based construction simulation system, 4D CAD tools using virtual reality (VR) objects are being applied in construction project. In such a system, since the expression of the object is based on VR image, it has a sense of separation from the real environment, thus limiting the use of field engineers. For this reason, there are increasing cases of applying augmented reality (AR) technology to reduce the sense of separation from the field and express realistic VR objects. This study attempts to develop a methodology and BIM module for the pre-construction verification system using AR technology to increase the practical utility of VR-based BIM objects. To this end, authors develop an AR-based drawing verification function and drawing object-based 4D model augmentation function that can increase the practical utility of 2D drawings, and verify the applicability of the system by performing case analysis. Since VR object-based image has a problem of low realism to field engineers, the linking technology between AR object and 4D model is expected to contribute to the expansion of the use of 4D CADsystem in the construction project.

A Study on Three-Dimensional Model Reconstruction Based on Laser-Vision Technology (레이저 비전 기술을 이용한 물체의 3D 모델 재구성 방법에 관한 연구)

  • Nguyen, Huu Cuong;Lee, Byung Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.633-641
    • /
    • 2015
  • In this study, we proposed a three-dimensional (3D) scanning system based on laser-vision technique and rotary mechanism for automatic 3D model reconstruction. The proposed scanning system consists of a laser projector, a camera, and a turntable. For laser-camera calibration a new and simple method was proposed. 3D point cloud data of the surface of scanned object was fully collected by integrating extracted laser profiles, which were extracted from laser stripe images, corresponding to rotary angles of the rotary mechanism. The obscured laser profile problem was also solved by adding an addition camera at another viewpoint. From collected 3D point cloud data, the 3D model of the scanned object was reconstructed based on facet-representation. The reconstructed 3D models showed effectiveness and the applicability of the proposed 3D scanning system to 3D model-based applications.

Automatic 3D model generation from 2D X-ray images

  • Le Minh Tuan;Kim Hae-Kwang
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.361-364
    • /
    • 2004
  • This paper describes an automatic 3D models generation algorithm based on 2D silhouette images, using X-ray camera without camera parameters. The algorithm takes a multi steps process approach. First, a series of 2D silhouette images is captured from different directions of object and then converted to binary images. An octree data structure is constructed for voxel-based representation of object. An estimate 3D volume of object can be reconstructed by intersecting voxels and the 2D silhouettes. The marching cube algorithm is applied to get triangle mesh representing of the obtained 3D model for rendering.

  • PDF