Acknowledgement
본 연구는 과학기술정보통신부에서 지원하는 대구경북과학기술원 기관고유사업 (23-IT-02)과 기술사업화 역량강화사업 (2023-DG-RD-0041) 지원을 받아 수행 되었습니다.
References
- J. H. Lee, J. K. Lee, J. H. Park, J. S. Kim, S. Kwon, "Construction and Effectiveness Evaluation of Multi Camera Dataset Specialized for Autonomous Driving in Domestic Road Environment," IEMEK J. Embed. Sys. Appl., Vol, 17, No. 5, pp. 273-280, 2022 (in Korean).
- T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, "Focal Loss for Dense Object Detection," in International Conference on Computer Vision (ICCV), pp. 2980-2988, October 2017.
- Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, "Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression," in 34nd AAAI Conference on Artificial Intelligence, Vol. 34, No. 07, 2020.
- T. Yin, X. Zhou, P. Krahenbuhl, "Center-based 3D Object Detection and Tracking," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 11784-11793, 2021.
- S. Wu, X. Li, X. Wang, "IoU-aware Single-stage Object Detector for Accurate Localization," Image and Vision Computing, Vol. 97, 103911, 2020.
- P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, D. Anguelov, "Scalability in Perception for Autonomous Driving: Waymo Open Dataset," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2446-2454, 2020.
- A. Patil, S. Malla, H. Gang, Y. T. Chen, "The H3D Dataset for Full-Surround 3D Multi-Object Detection and Tracking in Crowded Urban Scenes," International Conference on Robotics and Automation (ICRA), pp. 9552-9557, 2019.
- Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, "TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents," in 33nd AAAI Conference on Artificial Intelligence, pp. 6120-6127, 2019.
- AI Hub, "A3D: Korean Autonomous Driving Dataset," https://aihub.or.kr.
- Y. Zhou, O. Tuzel, "VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4490-4499, 2018.
- W. Zheng, W. Tang, S. Chen, L. Jiang, "CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud," in 35nd AAAI Conference on Artificial Intelligence, Vol. 35, No. 4, pp. 3555-3562, 42021.
- Y. Hu, Z. Ding, R. Ge, W. Shao, W. Huang, "AFDetV2: Rethinking the Necessity of the Second Stage for Object Detection from Point Clouds," in 36nd AAAI Conference on Artificial Intelligence, 2022.
- A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, O. Beijbom, "PointPillars: Fast Encoders for Object Detection From Point Clouds," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12697-12705, 2019.
- G. Shi, R. Li, C. Ma, "PillarNet: Real-Time and High-Performance Pillar-Based 3D Object Detection," in European Conference on Computer Vision (ECCV), pp. 35-52, 2022.
- X. Zhou, D. Wang, P. Krahenbuhl, "Objects as Points," in arXiv cs.CV 1904.07850, 2019
- H. Zhang, Y. Wang, F. Dayoub, N. Sunderhauf, "VarifocalNet: An IoU-aware Dense Object Detector," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8514-8523, 2021.