• Title/Summary/Keyword: object prediction

Search Result 357, Processing Time 0.022 seconds

Tracking of Moving Object using Fuzzy Prediction (퍼지 예측을 이용한 이동물체 추적)

  • Lim, Yong-Ho;Baek, Joong-Hwan;Hwang, Soo-Chan
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.26-36
    • /
    • 2001
  • One of the most important problems in time-varying image sequences is the automatic target tracking. This paper proposes a position prediction and tracking technique of moving object using fuzzy prediction. First, the object is segmented from background of the image using accumulative difference image technique. Then centroid of the segmented object is extracted by using the centroid method, and we propose to apply variable size searching window to the object in order to increase the tracking performance. Also, non-linear prediction is required for efficient object tracking. Therefore, in this paper, fuzzy prediction method is proposed for predicting the location of the moving object at next frame. An experimental result shows that the proposed fuzzy prediction system tracks the moving object in stable under various conditions.

  • PDF

An Energy-Efficient Matching Accelerator Using Matching Prediction for Mobile Object Recognition

  • Choi, Seongrim;Lee, Hwanyong;Nam, Byeong-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.251-254
    • /
    • 2016
  • An energy-efficient object matching accelerator is proposed for mobile object recognition based on matching prediction scheme. Conventionally, vocabulary tree has been used to save the external memory bandwidth in object matching process but involved massive internal memory transactions to examine each object in a database. In this paper, a novel object matching accelerator is proposed based on matching predictions to reduce unnecessary internal memory transactions by mitigating non-target object examinations, thereby improving the energy-efficiency. Experimental results show a 26% reduction in power-delay product compared to the prior art.

Object-based Stereoscopic Video Coding Using Image Segmentation and Prediction (영역분할 및 예측을 통한 객체기반 스테레오 동영상 부호화)

  • 권순규;배태면;한규필;정의윤;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2349-2358
    • /
    • 1999
  • Object-based stereoscopic video coding scheme is presented in this paper. In conventional BMA based stereoscopic video coding for low bit rate transmission, image prediction errors such as block artifacts and mosquito phenomena are occurred. In order to reduce these errors, object based coding scheme is adopted. The proposed scheme consists of preprocessing, object extraction, and object update procedures. The preprocessing procedure extracts non-object regions having low reliability for motion and disparity estimation. This procedure prohibits extracting inaccurate objects. For the better prediction of left channel image, the disparity information is added to the object extraction. And the proposed algorithm can reduce the accumulated error through the object update procedure that detects newly emerging objects, merges objects that have the same object-disparity and object motion, and splits object which has large image prediction error. The experimental results show that the proposed algorithms improve the quality of the prediction without block artifacts and mosquito phenomena.

  • PDF

The Study of IEC61850 Object Models for Transformer Preventive Diagnosis (변압기 예방진단을 위한 IEC61850 객체모델에 관한 연구)

  • HwangBo, Sung-Wook;Oh, Eui-Suk;Kim, Beung-Jin;Kim, Hyun-Sung;Lee, Jung-Buk;Park, Gui-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.103-104
    • /
    • 2006
  • Since the first proposition of IEC61850 object model at 1993, many questions about making a seamless model have been issued. the reason which they have worry about is that the functions of the equipment are supposed to be changed properly and new equipment and scheme are need to be introduced according to user's application. To handle those issues, TC57 which is a IEC committee for power control and communication has continuously updated the object model. Nowadays along with the new object model involving power quality, distribution resource and wind power, the committee has a plan to announce the revision of IEC61850-7-4. In the study, authors will present the prediction and diagnosis object models for transformer. Transformer models for protection and control have already been dealt with in the international standard but the models for prediction and diagnosis have never mentioned until now. Designing the prediction and diagnosis functions with the existing IEC61850-7-4, it'll be shown what is a proper object model for prediction and diagnosis.

  • PDF

Augmented Reality Service Based on Object Pose Prediction Using PnP Algorithm

  • Kim, In-Seon;Jung, Tae-Won;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.295-301
    • /
    • 2021
  • Digital media technology is gradually developing with the development of convergence quaternary industrial technology and mobile devices. The combination of deep learning and augmented reality can provide more convenient and lively services through the interaction of 3D virtual images with the real world. We combine deep learning-based pose prediction with augmented reality technology. We predict the eight vertices of the bounding box of the object in the image. Using the predicted eight vertices(x,y), eight vertices(x,y,z) of 3D mesh, and the intrinsic parameter of the smartphone camera, we compute the external parameters of the camera through the PnP algorithm. We calculate the distance to the object and the degree of rotation of the object using the external parameter and apply to AR content. Our method provides services in a web environment, making it highly accessible to users and easy to maintain the system. As we provide augmented reality services using consumers' smartphone cameras, we can apply them to various business fields.

Advanced Bounding Box Prediction With Multiple Probability Map

  • Lee, Poo-Reum;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.63-68
    • /
    • 2017
  • In this paper, we propose a bounding box prediction algorithm using multiple probability maps to improve object detection result of object detector. Although the performance of object detectors has been significantly improved, it is still not perfect due to technical problems and lack of learning data. Therefore, we use the result correction method to obtain more accurate object detection results. In the proposed algorithm, the preprocessed bounding box created as a result of object detection by the object detector is clustered in various form, and a conditional probability is given to each cluster to make multiple probability map. Finally, multiple probability map create new bounding box of object using morphological elements. Experiment results show that the newly predicted bounding box reduces the error in ground truth more than 45% on average compared to the previous bounding box.

Evolutionary Computing Driven Extreme Learning Machine for Objected Oriented Software Aging Prediction

  • Ahamad, Shahanawaj
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 2022
  • To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.

Reinforced Feature of Dynamic Search Area for the Discriminative Model Prediction Tracker based on Multi-domain Dataset (다중 도메인 데이터 기반 구별적 모델 예측 트레커를 위한 동적 탐색 영역 특징 강화 기법)

  • Lee, Jun Ha;Won, Hong-In;Kim, Byeong Hak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.323-330
    • /
    • 2021
  • Visual object tracking is a challenging area of study in the field of computer vision due to many difficult problems, including a fast variation of target shape, occlusion, and arbitrary ground truth object designation. In this paper, we focus on the reinforced feature of the dynamic search area to get better performance than conventional discriminative model prediction trackers on the condition when the accuracy deteriorates since low feature discrimination. We propose a reinforced input feature method shown like the spotlight effect on the dynamic search area of the target tracking. This method can be used to improve performances for deep learning based discriminative model prediction tracker, also various types of trackers which are used to infer the center of the target based on the visual object tracking. The proposed method shows the improved tracking performance than the baseline trackers, achieving a relative gain of 38% quantitative improvement from 0.433 to 0.601 F-score at the visual object tracking evaluation.

Modified Particle Filtering for Unstable Handheld Camera-Based Object Tracking

  • Lee, Seungwon;Hayes, Monson H.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.78-87
    • /
    • 2012
  • In this paper, we address the tracking problem caused by camera motion and rolling shutter effects associated with CMOS sensors in consumer handheld cameras, such as mobile cameras, digital cameras, and digital camcorders. A modified particle filtering method is proposed for simultaneously tracking objects and compensating for the effects of camera motion. The proposed method uses an elastic registration algorithm (ER) that considers the global affine motion as well as the brightness and contrast between images, assuming that camera motion results in an affine transform of the image between two successive frames. By assuming that the camera motion is modeled globally by an affine transform, only the global affine model instead of the local model was considered. Only the brightness parameter was used in intensity variation. The contrast parameters used in the original ER algorithm were ignored because the change in illumination is small enough between temporally adjacent frames. The proposed particle filtering consists of the following four steps: (i) prediction step, (ii) compensating prediction state error based on camera motion estimation, (iii) update step and (iv) re-sampling step. A larger number of particles are needed when camera motion generates a prediction state error of an object at the prediction step. The proposed method robustly tracks the object of interest by compensating for the prediction state error using the affine motion model estimated from ER. Experimental results show that the proposed method outperforms the conventional particle filter, and can track moving objects robustly in consumer handheld imaging devices.

  • PDF

Fast MOG Algorithm Using Object Prediction (객체 예측을 이용한 고속 MOG 알고리즘)

  • Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2721-2726
    • /
    • 2014
  • In a MOG algorithm using the GMM to subtract background, the model parameter computation and the object classification to be performed at every pixel require a huge computation and are the chief obstacles to its uses. This paper proposes a fast MOG algorithm that partly adopts the simple model parameter computation and the object classification skip on the basis of the object prediction. The former is applied to the pixels that gives little effect on the model parameter and the latter is applied to the pixels whose object prediction is firmly trusted. In comparative experiment between the conventional and proposed algorithms using videos, the proposed algorithm carries out the simple model parameter computation and the object classification skip over 77.75% and 92.97%, respectively, nevertheless it retains more than 99.98% and 99.36% in terms of image and moving object-unit average classification accuracies, respectively.