• Title/Summary/Keyword: object of evaluations

Search Result 57, Processing Time 0.027 seconds

Improved Pedestrian Detection Using Object and Background Histograms (객체와 배경 히스토그램을 활용한 개선된 보행자 검출)

  • Jung, Jin-sik;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.410-412
    • /
    • 2021
  • This paper proposes an improved pedestrian detection method using object and background histograms. Objects detected through the HOG & SVM algorithm are detected in a square shape. Inside the square area, the background and the object area are mixed. If only the area of the object excluding the background is detected, various object-related information may be easily obtained. The size of the detected rectangle is readjusted using an xy-axis projection algorithm to fit the size of the object. And then, the improved object is detected by dividing the background and the object based on the histogram of the object in the readjusted square. The average values of precision and recall, which are reliability evaluations comparing the detected object with the original object, are 97.9% and 90%, respectively.

  • PDF

Recording and interpretation of ocular movements: saccades, smooth pursuit, and optokinetic nystagmus

  • Jin-Ju Kang;Sun-Uk Lee;Jae-Myung Kim;Sun-Young Oh
    • Annals of Clinical Neurophysiology
    • /
    • v.25 no.2
    • /
    • pp.55-65
    • /
    • 2023
  • The ultimate role of ocular movements is to keep the image of an object within the fovea and thereby prevent image slippage on the retina. Accurate evaluations of eye movements provide very useful information for understanding the functions of the oculomotor system and determining abnormalities therein. Such evaluations also play an important role in enabling accurate diagnoses by identifying the location of lesions and discriminating from other diseases. There are various types of ocular movements, and this article focuses on saccades, fast eye movements, smooth pursuit, and slow eye movements, which are the most important types of eye movements used in evaluations performed in clinical practice.

Development Element Object and Implementation using MPC Data Model (수리시설물의 기본객체 추출과 MPC모델을 이용한 객체 구현)

  • 윤성수;이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.57-68
    • /
    • 2002
  • In the irrigation facilities, the irrigation system is connected systematically, and thus, it agrees to the object-oriented concept. Since it is necessary to go through comparative evaluations and to devise several alternatives plans in designing the irrigation system, it will be very efficient to use the objects that contain the design data. In this study, the object-oriented methodology has been proposed to define the objects, which will be used in the design system of irrigation facility. Furthermore, as for the essential elements of the objects, concept of element objects is formulated. By employing this concept, appropriate element objects have been derided for the irrigation facility. Necessary data model for realization of the objects is examined and selected. And then, required elements for applying the selected data model to the irrigation facility will be proposed

Joint frame rate adaptation and object recognition model selection for stabilized unmanned aerial vehicle surveillance

  • Gyu Seon Kim;Haemin Lee;Soohyun Park;Joongheon Kim
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.811-821
    • /
    • 2023
  • We propose an adaptive unmanned aerial vehicle (UAV)-assisted object recognition algorithm for urban surveillance scenarios. For UAV-assisted surveillance, UAVs are equipped with learning-based object recognition models and can collect surveillance image data. However, owing to the limitations of UAVs regarding power and computational resources, adaptive control must be performed accordingly. Therefore, we introduce a self-adaptive control strategy to maximize the time-averaged recognition performance subject to stability through a formulation based on Lyapunov optimization. Results from performance evaluations on real-world data demonstrate that the proposed algorithm achieves the desired performance improvements.

Adaptive Bayesian Object Tracking with Histograms of Dense Local Image Descriptors

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.104-110
    • /
    • 2016
  • Dense local image descriptors like SIFT are fruitful for capturing salient information about image, shown to be successful in various image-related tasks when formed in bag-of-words representation (i.e., histograms). In this paper we consider to utilize these dense local descriptors in the object tracking problem. A notable aspect of our tracker is that instead of adopting a point estimate for the target model, we account for uncertainty in data noise and model incompleteness by maintaining a distribution over plausible candidate models within the Bayesian framework. The target model is also updated adaptively by the principled Bayesian posterior inference, which admits a closed form within our Dirichlet prior modeling. With empirical evaluations on some video datasets, the proposed method is shown to yield more accurate tracking than baseline histogram-based trackers with the same types of features, often being superior to the appearance-based (visual) trackers.

Robust Online Object Tracking with a Structured Sparse Representation Model

  • Bo, Chunjuan;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2346-2362
    • /
    • 2016
  • As one of the most important issues in computer vision and image processing, online object tracking plays a key role in numerous areas of research and in many real applications. In this study, we present a novel tracking method based on the proposed structured sparse representation model, in which the tracked object is assumed to be sparsely represented by a set of object and background templates. The contributions of this work are threefold. First, the structure information of all the candidate samples is utilized by a joint sparse representation model, where the representation coefficients of these candidates are promoted to share the same sparse patterns. This representation model can be effectively solved by the simultaneous orthogonal matching pursuit method. In addition, we develop a tracking algorithm based on the proposed representation model, a discriminative candidate selection scheme, and a simple model updating method. Finally, we conduct numerous experiments on several challenging video clips to evaluate the proposed tracker in comparison with various state-of-the-art tracking algorithms. Both qualitative and quantitative evaluations on a number of challenging video clips show that our tracker achieves better performance than the other state-of-the-art methods.

Car detection area segmentation using deep learning system

  • Dong-Jin Kwon;Sang-hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.182-189
    • /
    • 2023
  • A recently research, object detection and segmentation have emerged as crucial technologies widely utilized in various fields such as autonomous driving systems, surveillance and image editing. This paper proposes a program that utilizes the QT framework to perform real-time object detection and precise instance segmentation by integrating YOLO(You Only Look Once) and Mask R CNN. This system provides users with a diverse image editing environment, offering features such as selecting specific modes, drawing masks, inspecting detailed image information and employing various image processing techniques, including those based on deep learning. The program advantage the efficiency of YOLO to enable fast and accurate object detection, providing information about bounding boxes. Additionally, it performs precise segmentation using the functionalities of Mask R CNN, allowing users to accurately distinguish and edit objects within images. The QT interface ensures an intuitive and user-friendly environment for program control and enhancing accessibility. Through experiments and evaluations, our proposed system has been demonstrated to be effective in various scenarios. This program provides convenience and powerful image processing and editing capabilities to both beginners and experts, smoothly integrating computer vision technology. This paper contributes to the growth of the computer vision application field and showing the potential to integrate various image processing algorithms on a user-friendly platform

The Evaluations of Sensor Models for Push-broom Satellite Sensor

  • Lee, Suk-Kun;Chang, Hoon
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • The aim of this research is comparing the existing approximation models (e.g. Affine Transformation and Direct Linear Transformation) with Rational Function Model as a substitute of rigorous sensor model of linear array scanner, especially push-broom sensor. To do so, this research investigates the mathematical model of each approximation method. This is followed by the assessments of accuracy of transformation from object space to image space by using simulated data generated by collinearity equations which incorporate or depict the physical aspects of linear array sensor.

  • PDF

Spatial Contrast Enhancement using Local Statistics based on Genetic Algorithm

  • Choo, MoonWon
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.89-92
    • /
    • 2017
  • This paper investigates simple gray level image enhancement technique based on Genetic Algorithms and Local Statistics. The task of GA is to adapt the parameters of local sliding masks over pixels, finding out the best parameters preserving the brightness and possibly preventing the creation of intensity artifacts in the local area of images. The algorithm is controlled by GA as to enhance the contrast and details in the images automatically according to an object fitness criterion. Results obtained in terms of subjective and objective evaluations, show the plausibility of the method suggested here.