DOI QR코드

DOI QR Code

Recording and interpretation of ocular movements: saccades, smooth pursuit, and optokinetic nystagmus

  • Jin-Ju Kang (Department of Neurology, Jeonbuk National University Hospital, Jeonbuk National University School of Medicine) ;
  • Sun-Uk Lee (Department of Neurology, Korea University Medical Center) ;
  • Jae-Myung Kim (Department of Neurology, Chonnam National University Hospital) ;
  • Sun-Young Oh (Department of Neurology, Jeonbuk National University Hospital, Jeonbuk National University School of Medicine)
  • Received : 2022.10.27
  • Accepted : 2023.02.03
  • Published : 2023.10.30

Abstract

The ultimate role of ocular movements is to keep the image of an object within the fovea and thereby prevent image slippage on the retina. Accurate evaluations of eye movements provide very useful information for understanding the functions of the oculomotor system and determining abnormalities therein. Such evaluations also play an important role in enabling accurate diagnoses by identifying the location of lesions and discriminating from other diseases. There are various types of ocular movements, and this article focuses on saccades, fast eye movements, smooth pursuit, and slow eye movements, which are the most important types of eye movements used in evaluations performed in clinical practice.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (No. 2022R1A2B5B01001933) and by the Fund of the Biomedical Research Institute, Jeonbuk National University Hospital.

References

  1. Leigh RJ, Zee DS. The neurology of eye movements. 5th ed. New York: Oxford University Press, 2015;10-12.
  2. Westheimer G. Mechanism of saccadic eye movements. AMA Arch Ophthalmol 1954;52:710-724. https://doi.org/10.1001/archopht.1954.00920050716006
  3. Davies R. Bedside neuro-otological examination and interpretation of commonly used investigations. J Neurol Neurosurg Psychiatry 2004;75 Suppl 4:iv32-iv44. https://doi.org/10.1136/jnnp.2004.054478
  4. Zuma e Maia F, Ramos BF, Mangabeira Albernaz PL, Cal R, Schubert MC. An algorithm for the diagnosis of vestibular, cerebellar, and oculomotor disorders using a systematized clinical bedside examination. Cerebellum 2021;20:760-767. https://doi.org/10.1007/s12311-020-01124-8
  5. Fischer B, Biscaldi M, Gezeck S. On the development of voluntary and reflexive components in human saccade generation. Brain Res 1997;754:285-297. https://doi.org/10.1016/S0006-8993(97)00094-2
  6. Ranalli PJ, Sharpe JA. Contrapulsion of saccades and ipsilateral ataxia: a unilateral disorder of the rostral cerebellum. Ann Neurol 1986;20:311-316. https://doi.org/10.1002/ana.410200307
  7. Boghen D, Troost BT, Daroff RB, Dell'Osso LF, Birkett JE. Velocity characteristics of normal human saccades. Invest Ophthalmol 1974;13:619-623.
  8. Sharpe JA, Fletcher WA. Saccadic intrusions and oscillations. Can J Neurol Sci 1984;11:426-433. https://doi.org/10.1017/S0317167100045959
  9. Kassavetis P, Kaski D, Anderson T, Hallett M. Eye movement disorders in movement disorders. Mov Disord Clin Pract 2022;9:284-295. https://doi.org/10.1002/mdc3.13413
  10. Lemos J, Eggenberger E. Saccadic intrusions: review and update. Curr Opin Neurol 2013;26:59-66. https://doi.org/10.1097/WCO.0b013e32835c5e1d
  11. Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. II. Macrosaccadic oscillation. An oculographic, control system and clinico-anatomical analysis. Brain 1976;99:509-522.
  12. Yee RD, Spiegel PH, Yamada T, Abel LA, Suzuki DA, Zee DS. Voluntary saccadic oscillations, resembling ocular flutter and opsoclonus. J Neuroophthalmol 1994;14:95-101. https://doi.org/10.1097/00041327-199406000-00009
  13. Murphy BJ. Pattern thresholds for moving and stationary gratings during smooth eye movement. Vision Res 1978;18:521-530. https://doi.org/10.1016/0042-6989(78)90196-7
  14. Tychsen L, Lisberger SG. Visual motion processing for the initiation of smooth-pursuit eye movements in humans. J Neurophysiol 1986;56:953-968. https://doi.org/10.1152/jn.1986.56.4.953
  15. Thier P, Ilg UJ. The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol 2005;15:645-652. https://doi.org/10.1016/j.conb.2005.10.013
  16. Mittelstaedt H. Theory of coordinate transformation by efference copy survives another attack. Behav Brain Sci 1994;17:269-270. https://doi.org/10.1017/S0140525X00034476
  17. Miles FA. The sensing of optic flow by the primate optokinetic system. In: John MF, Robin W, Robert WK, eds. Studies in Visual Information Processing. 1st ed. Vol. 6. Durham (UK): North-Holland, 1995;47-62.
  18. Wyatt HJ, Pola J. Predictive behavior of optokinetic eye movements. Exp Brain Res 1988;73:615-626. https://doi.org/10.1007/BF00406621
  19. Cullen KE. Physiology of central pathways. Handb Clin Neurol 2016;137:17-40. https://doi.org/10.1016/B978-0-444-63437-5.00002-9
  20. Maioli C. Optokinetic Nystagmus: modeling the velocity storage mechanism. J Neurosci 1988;8:821-832. https://doi.org/10.1523/JNEUROSCI.08-03-00821.1988
  21. Kaneko CR. Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 1997;78:1753-1768. https://doi.org/10.1152/jn.1997.78.4.1753
  22. Sharpe JA, Sylvester TO. Effect of aging on horizontal smooth pursuit. Invest Ophthalmol Vis Sci 1978;17:465-468.
  23. Kim JS, Sharpe JA. The vertical vestibulo-ocular reflex, and visual-vestibular interaction during active head motion. Ann N Y Acad Sci 2002;956:533-536. https://doi.org/10.1111/j.1749-6632.2002.tb02875.x
  24. Morrow MJ, Sharpe JA. Cerebral hemispheric localization of smooth pursuit asymmetry. Neurology 1990;40:284-292. https://doi.org/10.1212/WNL.40.2.284
  25. Komatsu H, Wurtz RH. Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. J Neurophysiol 1989;62:31-47. https://doi.org/10.1152/jn.1989.62.1.31
  26. Bogousslavsky J, Regli F. Pursuit gaze defects in acute and chronic unilateral parieto-occipital lesions. Eur Neurol 1986;25:10-18. https://doi.org/10.1159/000115980
  27. Lekwuwa GU, Barnes GR. Cerebral control of eye movements. I. The relationship between cerebral lesion sites and smooth pursuit deficits. Brain 1996;119:473-490. https://doi.org/10.1093/brain/119.2.473
  28. Zackon DH, Sharpe JA. Midbrain paresis of horizontal gaze. Ann Neurol 1984;16:495-504.
  29. Thier P, Bachor A, Faiss J, Dichgans J, Koenig E. Selective impairment of smooth-pursuit eye movements due to an ischemic lesion of the basal pons. Ann Neurol 1991;29:443-448. https://doi.org/10.1002/ana.410290419
  30. Tarnutzer AA, Ramat S, Straumann D, Zee DS. Pursuit responses to target steps during ongoing tracking. J Neurophysiol 2007;97:1266-1279. https://doi.org/10.1152/jn.00819.2006
  31. Carl JR, Gellman RS. Human smooth pursuit: stimulus-dependent responses. J Neurophysiol 1987;57:1446-1463. https://doi.org/10.1152/jn.1987.57.5.1446
  32. Baloh RW, Yee RD, Honrubia V. Clinical abnormalities of optokinetic nystagmus. In: Lennerstrand G, Zee DS, Keller EL, eds. Functional Basis of Ocular Motility Disorders. 1st ed. Vol. 1. Oxford (UK): Pergamon, 1982;311-320.
  33. Brandt T, Allum JH, Dichgans J. Computer analysis of optokinetic nystagmus in patients with spontaneous nystagmus of peripheral vestibular origin. Acta Otolaryngol 1978;86:115-122. https://doi.org/10.3109/00016487809124727
  34. Brantberg K, Magnusson M. Asymmetric optokinetic afterresponse in patients with vestibular neuritis. J Vestib Res 1990- 1991;1:279-289. https://doi.org/10.3233/VES-1991-1306
  35. Zasorin NL, Baloh RW, Yee RD, Honrubia V. Influence of vestibulo-ocular reflex gain on human optokinetic responses. Exp Brain Res 1983;51:271-274. https://doi.org/10.1007/BF00237202
  36. Zee DS, Yee RD, Robinson DA. Optokinetic responses in labyrinthine-defective human beings. Brain Res 1976;113:423-428.  https://doi.org/10.1016/0006-8993(76)90955-0