• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.036 seconds

A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference (BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2004
  • In this paper, we propose a system for automatic moving object detection and tracking in sequence images acquired from a moving camera. The proposed algorithm consists of moving object detection and its tracking. Moving object can be detected by integration of BBME and DD method We segment the detected object using histogram back projection, match it using histogram intersection, extract and track it using XY-projection. Computer simulation results have shown that the proposed algorithm is reliable and can successfully detect and track a moving object on image sequences obtained by a moving camera.

A Study on the Implementation of Real-Time Marine Deposited Waste Detection AI System and Performance Improvement Method by Data Screening and Class Segmentation (데이터 선별 및 클래스 세분화를 적용한 실시간 해양 침적 쓰레기 감지 AI 시스템 구현과 성능 개선 방법 연구)

  • Wang, Tae-su;Oh, Seyeong;Lee, Hyun-seo;Choi, Donggyu;Jang, Jongwook;Kim, Minyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.571-580
    • /
    • 2022
  • Marine deposited waste is a major cause of problems such as a lot of damage and an increase in the estimated amount of garbage due to abandoned fishing grounds caused by ghost fishing. In this paper, we implement a real-time marine deposited waste detection artificial intelligence system to understand the actual conditions of waste fishing gear usage, distribution, loss, and recovery, and study methods for performance improvement. The system was implemented using the yolov5 model, which is an excellent performance model for real-time object detection, and the 'data screening process' and 'class segmentation' method of learning data were applied as performance improvement methods. In conclusion, the object detection results of datasets that do screen unnecessary data or do not subdivide similar items according to characteristics and uses are better than the object recognition results of unscreened datasets and datasets in which classes are subdivided.

Implementation of Moving Object Recognition based on Deep Learning (딥러닝을 통한 움직이는 객체 검출 알고리즘 구현)

  • Lee, YuKyong;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2018
  • Object detection and tracking is an exciting and interesting research area in the field of computer vision, and its technologies have been widely used in various application systems such as surveillance, military, and augmented reality. This paper proposes and implements a novel and more robust object recognition and tracking system to localize and track multiple objects from input images, which estimates target state using the likelihoods obtained from multiple CNNs. As the experimental result, the proposed algorithm is effective to handle multi-modal target appearances and other exceptions.

Object Detection and Tracking using Bayesian Classifier in Surveillance (서베일런스에서 베이지안 분류기를 이용한 객체 검출 및 추적)

  • Kang, Sung-Kwan;Choi, Kyong-Ho;Chung, Kyung-Yong;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.297-302
    • /
    • 2012
  • In this paper, we present a object detection and tracking method based on image context analysis. It is robust from the image variations such as complicated background, dynamic movement of the object. Image context analysis is carried out using the hybrid network of k-means and RBF. The proposed object detection employs context-driven adaptive Bayesian framework to relive the effect due to uneven object images. The proposed method used feature vector generator using 2D Haar wavelet transform and the Bayesian discriminant method in order to enhance the speed of learning. The system took less time to learn, and learning in a wide variety of data showed consistent results. After we developed the proposed method was applied to real-world environment. As a result, in the case of the object to detect pass outside expected area or other changes in the uncertain reaction showed that stable. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous communication computing environment and applications, for which Radio Frequency IDentification Identification(RFID) is has been considered as also a core technology for ubiquitous wireless communication. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and k can be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in 1-Dimensional space, the square in 2-Dimensional space and the cubic in 3-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2- and 3-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space and 143% of the tag spacing distance in 3-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

The Accuracy analysis of a RFID-based Positioning System with Kalman-filter (칼만필터를 적용한 RFID-기반 위치결정 시스템의 정확도 분석)

  • Heo, Joon;Kim, Jung-Hwan;Sohn, Hong-Gyoo;Yun, Kong-Hyun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.447-450
    • /
    • 2007
  • Positioning technology for moving object is an important and essential component of ubiquitous. Also RFID(Radio Frequency IDentification) is a core technology of ubiquitous wireless communication. In this study we adapted kalman-filter theory to RFID-based Positioning System in order to trace a time-variant moving object and verify the positioning accuracy using RMSE (Roong technology for moving object is an important and essential component of ubiquitous Mean Square Error). The purpose of this study is to verify an effect of kalman-filter on the positioning accuracy and to analyze what does each design factor have an effect on the positioning accuracy by means of simulations and to suggest a standard of optimal design factor of a RFID-based Positioning System. From the results of simulations, Kalman-filer improved the positioning accuracy remarkably; the detection range of RFID tag is not a determining factor. The smaller standard deviation of detection range improves the positioning accuracy. However it accompanies a smaller fluctuation of the positioning accuracy. The larger detection rate of RFID tag yields the smaller fluctuation in the positioning accuracy and has more stable system and improves the positioning accuracy;

  • PDF

Robust Object Detection from Indoor Environmental Factors (다양한 실내 환경변수로부터 강인한 객체 검출)

  • Choi, Mi-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, we propose a detection method of reduced computational complexity aimed at separating the moving objects from the background in a generic video sequence. In generally, indoor environments, it is difficult to accurately detect the object because environmental factors, such as lighting changes, shadows, reflections on the floor. First, the background image to detect an object is created. If an object exists in video, on a previously created background images for similarity comparison between the current input image and to detect objects through several operations to generate a mixture image. Mixed-use video and video inputs to detect objects. To complement the objects detected through the labeling process to remove noise components and then apply the technique of morphology complements the object area. Environment variable such as, lighting changes and shadows, to the strength of the object is detected. In this paper, we proposed that environmental factors, such as lighting changes, shadows, reflections on the floor, including the system uses mixture images. Therefore, the existing system more effectively than the object region is detected.

Realtime Detection of Benthic Marine Invertebrates from Underwater Images: A Comparison betweenYOLO and Transformer Models (수중영상을 이용한 저서성 해양무척추동물의 실시간 객체 탐지: YOLO 모델과 Transformer 모델의 비교평가)

  • Ganghyun Park;Suho Bak;Seonwoong Jang;Shinwoo Gong;Jiwoo Kwak;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.909-919
    • /
    • 2023
  • Benthic marine invertebrates, the invertebrates living on the bottom of the ocean, are an essential component of the marine ecosystem, but excessive reproduction of invertebrate grazers or pirate creatures can cause damage to the coastal fishery ecosystem. In this study, we compared and evaluated You Only Look Once Version 7 (YOLOv7), the most widely used deep learning model for real-time object detection, and detection tansformer (DETR), a transformer-based model, using underwater images for benthic marine invertebratesin the coasts of South Korea. YOLOv7 showed a mean average precision at 0.5 (mAP@0.5) of 0.899, and DETR showed an mAP@0.5 of 0.862, which implies that YOLOv7 is more appropriate for object detection of various sizes. This is because YOLOv7 generates the bounding boxes at multiple scales that can help detect small objects. Both models had a processing speed of more than 30 frames persecond (FPS),so it is expected that real-time object detection from the images provided by divers and underwater drones will be possible. The proposed method can be used to prevent and restore damage to coastal fisheries ecosystems, such as rescuing invertebrate grazers and creating sea forests to prevent ocean desertification.

Design and Implementation of Optical Flow Estimator for Moving Object Detection in Advanced Driver Assistance System (첨단운전자보조시스템용 이동객체검출을 위한 광학흐름추정기의 설계 및 구현)

  • Yoon, Kyung-Han;Jung, Yong-Chul;Cho, Jae-Chan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.544-551
    • /
    • 2015
  • In this paper, the design and implementation results of the optical flow estimator (OFE) for moving object detection (MOD) in advanced driver assistance system (ADAS). In the proposed design, Brox's algorithm with global optimization is considered, which shows the high performance in the vehicle environment. In addition, Cholesky factorization is applied to solve Euler-Lagrange equation in Brox's algorithm. Also, shift register bank is incorporated to reduce memory access rate. The proposed optical flow estimator was designed with Verilog-HDL, and FPGA board was used for the real-time verification. Implementation results show that the proposed optical flow estimator includes the logic slices of 40.4K, 155 DSP48s, and block memory of 11,290Kbits.

Comparative Analysis of YOLOv8 Object Detection Model Performance in Fire Detection in Traditional Markets Using Thermal Cameras (열화상 카메라를 이용한 전통시장 화재 감지에서 YOLOv8 객체 탐지 모델의 성능 비교 분석)

  • Ko Ara;Cho Jungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.117-126
    • /
    • 2023
  • Traditional markets, formed naturally, often feature aged buildings and facilities that are susceptible to fire. However, the lack of adequate fire detection systems in these markets can easily lead to large-scale fires upon ignition. Therefore, this study was conducted with the aim of detecting fires in traditional markets, utilizing thermal imaging cameras for data collection and the YOLOv8 model for object detection experiments. Data were collected in the night markets within traditional markets of xx city and by simulating fire scenarios. A comparative analysis of the Nano and XL models of YOLOv8 revealed that the XL model is more effective in detecting fires. The XL model not only demonstrated higher accuracy in correctly identifying flames but also tended to miss fewer fires compared to the Nano model. In the case of objects other than flames, the XL model showed superior performance over the Nano model. Taking all these factors into account, it is anticipated that with further data collection and improvement in model performance, a suitable fire detection system for traditional markets can be developed.