• Title/Summary/Keyword: numerical parametric study

Search Result 1,017, Processing Time 0.028 seconds

Static and fatigue performance of short group studs connector in novel post-combination steel-UHPC composite deck

  • Han Xiao;Wei Wang;Chen Xu;Sheraz Abbas;Zhiping Lin
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.659-674
    • /
    • 2024
  • Casting Ultra High-Performance Concrete (UHPC) on an orthotropic steel deck and forming a composite action by connectors could improve the steel deck fatigue performance. This study presents the mechanical performance of a proposed post-combination connection between UHPC and steel, which had a low constraint effect on UHPC shrinkage. A total of 10 push-out tests were conducted for static and fatigue performance investigations. And the test results were compared with evaluation methods in codes to verify the latter's applicability. Meanwhile, nonlinear simulation and parametric works with material damage plasticity models were also conducted for the static and fatigue failure mechanism understanding. The static and fatigue test results both showed that fractures at stud roots and surrounding local UHPC crushes were the main failure appearances. Compared with normally arranged studs, group arrangement could result in reductions of static stud shear stiffness, strength, and fatigue lives, which were about 18%, 12%, and 27%, respectively. Compared with the test results, stud shear capacity and fatigue lives evaluations based on the codes of AASHTO, Eurocode 4, JSCE and JTG D64 could be applicable in general while the safety redundancies tended to be smaller or even insufficient for group studs. The analysis results showed that arranging studs in groups caused obviously uneven strain distributions. The severer stress concentration and larger strain ranges caused the static and fatigue performance degradations of group studs. The research outcome provides a very important basis for establishing a design method of connections in the novel post-combination steel-UHPC composite deck.

Effect of static and dynamic impedance functions on the parametric analysis of SSI system

  • Maroua Lagaguine;Badreddine Sbarta
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.293-310
    • /
    • 2024
  • This paper investigates the dynamic response of structures during earthquakes and provides a clear understanding of soil-structure interaction phenomena. It analyses various parameters, comprising ground shear wave velocity and structure properties. The effect of soil impedance function form on the structural response of the system through the use of springs and dashpots with two frequency cases: independent and dependent frequencies. The superstructure and the ground were modeled linearly. Using the substructure method, two different approaches are used in this study. The first is an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. The second is a numerical analysis generated with 2D finite element modeling using ABAQUS software. The superstructure is represented as a SDOF system in all the SSI models assessed. This analysis establishes the key parameters affecting the soil-structure interaction and their effects. The different results obtained from the analysis are compared for each studied case (frequency-independent and frequency-dependent impedance functions). The achieved results confirm the sensitivity of buildings to soil-structure interaction and highlight the various factors and effects, such as soil and structure properties, specifically the shear wave velocity, the height and mass of the structure. Excitation frequency, and the foundation anchoring height, also has a significant impact on the fundamental parameters and the response of the coupled system at the same time. On the other hand, it have been demonstrated that the impedance function forms play a critical role in the accurate evaluation of structural behavior during seismic excitation. As a result, the evaluation of SSI effects on structural response must take into account the dynamic properties of the structure and soil accordingly.

Bending Performance Evaluation of Concrete Filled Tubular Structures With Various Diameter-thickness Ratios and Concrete Strengths (콘크리트 충전강관 구조의 직경-두께비 및 콘크리트 강도 변화에 따른 휨 성능 평가)

  • Lee, Sang-Youl;Park, Dae-Yong;Lee, Sang-Bum;Lee, Rae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.223-230
    • /
    • 2009
  • In this study we deal with bending behaviors of a concrete filled tubular(CFT) with various diameter-thickness ratios and concrete strengths. In finite element analysis using a commercial package(LUSAS), the bonding effect between concrete and steel in CFT structures is modeled by applying a joint element for the bonding surface. In order to consider the nonlinearity of concrete and steel tubes, stress-strain curves of the concrete and steel are used for the increased stresses in a plastic domain. The numerical results obtained from the proposed method show good agreement with the experimental data from load-displacement curves of a steel tube under distributed loads. Several parametric studies are focused on structural characteristics of CFT under bending effects for different diameter-thickness ratios and concrete strengths.

A Numerical Analysis on Application of Laser Peening to Dissimilar Metal Welds in a Safety Injection Nozzle of Integral Reactor (일체형 원자로 안전주입 노즐 이종금속 용접부에 대한 레이저 피닝 적용의 수치 해석적 연구)

  • Seo, Joong-Hyun;Kim, Jong-Sung;Jhung, Myung-Jo;Ryu, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.599-608
    • /
    • 2012
  • A numerical analysis has been performed through implicit dynamic finite element analysis using the commercial package, ABAQUS in order to investigate effect of laser peening on welding residual stress mitigation of dissimilar metal welds in a safety injection nozzle of integral reactor. The implicit dynamic finite element analysis are compared with the previous experimental results. By comparison, it is identified that the implicit dynamic finite element analysis is valid for residual stress mitigation via laser peening. Implicit static finite element residual stress analysis has been performed for the dissimilar metal welds subject to inner repair welding. The analysis results represent that both axial and hoop residual stresses are tensile on inner surface of safety injection nozzle due to inner repair welding. Also Parametric study has performed to investigate effect of laser peening variables such as maximum impact pressure, duration time of pressure, spot diameter and peening direction on the welding residual stress mitigation. As a result, it is found that laser peening has the preventive maintenance effect to mitigate mainly residual stresses of region near inner surface.

Analysis of Dynamic Response and Vibration Mitigation for Steel Box Girder Railway Bridges (강박스거더 철도교량의 동적거동 및 진동저감 방안 분석)

  • Hwang, Eui Seung;Kim, Do Young;Jang, Seong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.487-495
    • /
    • 2017
  • Recently rapid-transit railway systems have been constructed in many developing countries due to its advantages in congestions and environmental problems. Railway bridges show many different aspects compared to road bridges and passenger comfort and traffic safety are one of them. In particular, deflection and acceleration due to repeated vibration characteristics have a structural weakness that can cause undesirable response. Especially steel railway bridges have been known to have weaknesses due to its relatively light weights compared to concrete bridges. The purpose of this study is to analyze the dynamic response of steel box girder bridges due to passing trains then propose the appropriate method to mitigate the level of vibration in terms of accelerations. Three steel railway bridges are tested and the numerical model to analyze the dynamic response of the bridge by passing train are developed. For the verification of the model, the natural frequency extracted using the acceleration data measured in the bridge is compared with the natural frequency of the numerical model. To mitigate the acceleration level of the bridge, parametric studies are performed to find the effectiveness of the method. Based on the analysis, the appropriate method is proposed for decreasing the acceleration of the bridge for passenger comfort and traffic safety.

Numerical Analysis of the Effects of Stress Anisotropy and Tunnel Excavation Shape on Initial Elastic-wall Displacement (지반응력의 비등방성에 따른 터널측벽의 초기탄성변위 특성에 대한 수치해석적 연구)

  • 김상환;정혁일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.33-42
    • /
    • 2002
  • Ground reaction curve is a very important information for evaluating the side wall displacements and installation time of the tunnle support. The ground reaction curve can be estimated by analytical closed form solutions derived on the supposition of circular section and isotropic stress condition. The conditions of stress field and tunnel configurations, however, are quite different in practice. Therefore, it is necessary to investigate the effects of stress anisotropy and tunnel configurations in order to use simply in practical design. This paper describes a study of influence factors in the ground reaction curve. In order to evaluate the applicability of analytical closed form solution in practical design, two sets of parametric studies were carried out by numerical analysis in elastic tunnel behaviour: one set of studies investigated the influence of the K and the other set investigated the influence of the tunnel configurations such as circular and horse-shoe shape. In the studies, K value varies between 0.5 and 3.0, initial ground vertical stress varies between 5~30MPa far each K values. The results indicated that the self-supportability of ground is larger in the ground having lower K value. However, it is suggested that the applicability of closed form solution may not be adequate to determine directly the installation time of the support and self-supportability of ground. It is necessary to consider stress anisotropy and tunnel configurations.

Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines (헬리컬 터빈의 설계인자에 따른 성능 연구)

  • Han, Jun-Sun;Choi, Da-Hye;Hyun, Beom-Soo;Kim, Moon-Chan;Rhee, Shin-Hyung;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • The characteristics of a helical turbine to be used for tidal stream energy conversion have been numerically studied with varying a few design parameters. The helical turbines were proposed aiming at mitgating the well known poor cut-in characteristics and the structural vibration caused by the fluctuating torque, and the basic concept is introducing some twisting angle of the vertical blade along the rotation axis of the turbine. Among many potential controling parameters, we focused, in this paper, on the twisting angle and the height to diameter ratio of the turbine, and, based on the numerical experiment, We tried to propose a configuration of such turbine for which better performance can be expected. The three-dimensional unsteady RANS equations were solved by using the commercial CFD software, FLUENT with k-${\omega}$ SST turbulence model, and the grid was generated by GAMBIT. It is shown that there are a range of the twisting angle producing better efficiency with less vibration and the minimum height to diameter ratio above which the efficiency does not improve considerably.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Practical Numerical Model for Wave Propagation and Fluid-Structure Interaction in Infinite Fluid (무한 유체 영역에서의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Cho, Jeong-Rae;Han, Seong-Wook;Lee, Jin Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.427-435
    • /
    • 2021
  • An analysis considering the fluid-structure interaction is required to strictly evaluate the seismic behavior of facilities such as, environmental facilities and dams, that store fluids. Specifically, in the case of an infinite domain in the upstream direction, such as a dam-reservoir system, this should be carefully considered. In this study, we proposed a practical numerical model for both wave propagation and fluid-structure interaction analyses of an infinite domain, for a system with a semi-infinite domain such as a dam-reservoir system. This method was applicable to the time domain, and enabled accurate boundary analysis. For an infinite fluid domain, a small number of mid-point integrated acoustic finite elements were applied instead of a general acoustic finite element, and a viscous boundary was imposed on the outermost boundary. The validity and accuracy of the proposed method were secured by comparing analytic solutions of a reservoir having infinite domain, with the parametric analysis results, for the number of elements and the size of the modeling region. Furthermore, the proposed method was compared with other fluid-structure interaction methods using additional mass.

Numerical and Experimental Study on the Coal Reaction in an Entrained Flow Gasifier (습식분류층 석탄가스화기 수치해석 및 실험적 연구)

  • Kim, Hey-Suk;Choi, Seung-Hee;Hwang, Min-Jung;Song, Woo-Young;Shin, Mi-Soo;Jang, Dong-Soon;Yun, Sang-June;Choi, Young-Chan;Lee, Gae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-174
    • /
    • 2010
  • The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with the harmonic mean approach for turbulent reaction. Further Lagrangian approach in particle trajectory is adopted with the consideration of turbulent effect caused by the non-linearity of drag force, etc. The program developed is successfully evaluated against experimental data such as profiles of temperature and gaseous species concentration together with the cold gas efficiency. Further intensive investigation has been made in terms of the size distribution of pulverized coal particle, the slurry concentration, and the design parameters of gasifier. These parameters considered in this study are compared and evaluated each other through the calculated syngas production rate and cold gas efficiency, appearing to directly affect gasification performance. Considering the complexity of entrained coal gasification, even if the results of this study looks physically reasonable and consistent in parametric study, more efforts of elaborating modeling together with the systematic evaluation against experimental data are necessary for the development of an reliable design tool using CFD method.