DOI QR코드

DOI QR Code

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2)

스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2)

  • 박정욱 (한국지질자원연구원 지질환경연구본부) ;
  • ;
  • ;
  • ;
  • 박의섭 (한국지질자원연구원 지질환경연구본부)
  • Received : 2019.06.18
  • Accepted : 2019.06.26
  • Published : 2019.06.30

Abstract

We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

본 연구에서는 TOUGH-FLAC 연동해석기법을 이용하여 Mont Terri 지하연구시설에서 수행된 단층 내 물 주입시험을 수치적으로 모델링하고, 단층의 재활성과 수리역학적 거동 특성을 살펴보았다. TOUGH2 해석에서는 단층을 Darcy의 법칙과 삼승법칙(Cubic law)을 따르는 연속체 요소로 모델링하였으며, FLAC3D 해석에서는 미끄러짐과 개폐가 허용되는 불연속 인터페이스 요소를 통해 모사하였다. 현장에서 획득한 단층의 균열개방압력(fracture opening pressure), 주입율, 모니터링 압력, 변위 곡선 등을 바탕으로, 단층의 탄성적 변형과 파괴에 의한 수직팽창 특성을 반영할 수 있는 수리간극모델과 수리역학 커플링 관계를 해석모델에 반영하였다. 한편, 현지응력 조건, 단층의 강도 및 변형 특성에 따른 파라미터 해석을 실시하여 각 입력변수가 해석 결과에 미치는 영향을 분석하였으며, 이를 통해 현장시험 결과를 가장 잘 재현할 수 있는 파라미터 조합을 선정하였다. 해석 결과, 균열개방압력에서 단층의 주입율과 모니터링 압력이 크게 증가하는 현상을 합리적으로 재현할 수 있었다. 하지만, 동일한 입력 변수 조건에서 단층의 전단변위와 파괴영역의 범위는 현장시험 결과에 비해 과대평가되는 결과를 보였다. 이는 해석모델에서는 고압의 주입조건에서 단층의 지속적인 전단파괴가 유도되는 반면, 현장에서는 수리간극의 변화가 전단 미끄러짐보다는 인장력에 의한 단층면의 개방(tensile opening)에 크게 의존하는 것으로 추정되기 때문이다.

Keywords

OBGHBQ_2019_v29n3_197_f0001.png 이미지

Fig. 1. Geological profile along the Mont Russelin and Mont Terri tunnels (Bossart et al., 2017)

OBGHBQ_2019_v29n3_197_f0002.png 이미지

Fig. 2. Mont Terri 'Main Fault' reactivation experiment (after Guglielmi et al., 2014, Guglielmin et al., 2017): (a) SIMFIP test

OBGHBQ_2019_v29n3_197_f0003.png 이미지

Fig. 3. Injection pressure scheme

OBGHBQ_2019_v29n3_197_f0004.png 이미지

Fig. 4. Field experimental results selected for Task B step 2 modelling: (a) Injection and monitoring pressures and injection flow rate; (b) relative displacement of upper anchor to lower anchor (in vertical, northern and western directions)

OBGHBQ_2019_v29n3_197_f0005.png 이미지

Fig. 5. FLAC3D model: (a) rotation of coordinate system for representing in-situ stress condition; (b) numerical mesh in rotated coordinate system

OBGHBQ_2019_v29n3_197_f0006.png 이미지

Fig. 6. Initial conditions of normal stress and shear stress acting on fault

OBGHBQ_2019_v29n3_197_f0007.png 이미지

Fig. 7. Variations of Injection flow rate obtained from field experiment and numerical model (best matching case)

OBGHBQ_2019_v29n3_197_f0008.png 이미지

Fig. 8. Variations of injection pressure and monitoring pressures obtained from field experiment and numerical model (best matching case)

OBGHBQ_2019_v29n3_197_f0009.png 이미지

Fig. 9. Variations of Injection flow rate obtained from field experiment and numerical model (best matching case)

OBGHBQ_2019_v29n3_197_f0010.png 이미지

Fig. 10. Displacement vector at upper and lower anchors: (a) 420 s and (b) 453 s of water injection (best matching case)

OBGHBQ_2019_v29n3_197_f0011.png 이미지

Fig. 11. Fault slip zone and shear displacement in meters simulated at 453 s of injection (best matching case)

OBGHBQ_2019_v29n3_197_f0012.png 이미지

Fig. 12. Variations of injection flow rate with different normal stiffness and creation aperture magnitude: (a) kn= 70 GPa, hc=28 μm; (b) Kn= 55 GPa, hc= 40 μm

OBGHBQ_2019_v29n3_197_f0013.png 이미지

Fig. 13. Effects of fault dip angle on anchor displacement: (a) dip angle of 60°; (b) dip angle of 70°

Table 1. Parametric study to match field data

OBGHBQ_2019_v29n3_197_t0001.png 이미지

References

  1. Bachmann, C.E., Wiemer, S., Goertz-Allmann, B.P., Woessner, J., 2012. Influence of pore-pressure on the event-size distribution of induced earthquakes, Geophysical Research Letters 39(9): L09302.
  2. Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., et al., 2017, Mont Terri rock laboratory, 20 years of research: Introduction, site characteristics and overview of experiments, Swiss Journal of Geosciences 110: 3-22. https://doi.org/10.1007/s00015-016-0236-1
  3. Cladouhos, T.T., Petty, S., Larson, B., Iovenitti, J., Livesay, B., Baria, R., 2009, Toward more efficient heat mining: a planned enhanced geothermal system demonstration project. Geothermal Resources Council 33: 165-170.
  4. Guglielmi, Y., Birkholzer, J., Rutqvist, J., Jeanne, P., Nussbaum, C., 2017, Can Fault Leakage Occur Before or Without Reactivation? Results from an In Situ fault reactivation expriement at Mont Terri, Energy Procedia 114, 3167-3174. https://doi.org/10.1016/j.egypro.2017.03.1445
  5. Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., Elsworth, D., 2015, Seismicity triggered by fluid injection-induced aseismic slip, Science 348.
  6. Guglielmi, Y., Cappa, F., Lancon, H., Janowczyk, J., Rutqvist, J., Tsang, C.-F., Wang, J. S. Y., 2014, ISRM suggested method for Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP): Using a 3-components borehole deformation sensor. Rock Mechanics and Rock Engineering 47: 303-311. https://doi.org/10.1007/s00603-013-0517-1
  7. Hubbert, M.K., Willis, D.G., 1957, Mechanics of hydraulic fracturing, Petroleum Transactions AIME 210: 153-168. https://doi.org/10.2118/686-G
  8. Itasca Consulting Group Inc., 2012, FLAC3D Manual: Fast Lagrangian Analysis of Con- tinua in 3 Dimensions ver. 5.0 Manual. Minnesota: Itasca Consulting Group Inc.
  9. Korean Government Commission on the Cause of the Pohang Earthquake, 2019, Summary report of the Korean government commission on relations between the 2017 Pohang earthquake and EGS project, The Geological Society of Korea.
  10. Lee, C.I., Min, K.B., Kim, K.I., 2014, Case study on induced seismicity during the injection of fluid related to energy development technologies, Tunnel & Underground Space 24(6): 418-429. https://doi.org/10.7474/TUS.2014.24.6.418
  11. Martin, C.D, Lanyon, G.W., 2003, Measurement of in-situ stress in weak rocks at Mont Terri Rock Laboratory, Switzerland, International Journal of Rock Mechanics & Mining Sciences 40: 1077-1088. https://doi.org/10.1016/S1365-1609(03)00113-8
  12. Norbeck, J.H., McClure, M.W., Horne, R.N., 2018, Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation. Geothermics 74: 135-149. https://doi.org/10.1016/j.geothermics.2018.03.003
  13. Park, J.W., Kim, T., Park, E.S., Lee, C., 2018a, Coupled hydro-mechanical modelling of fault reactivation induced by water injection: DECOVALEX-2019 Task B (Benchmark model test), Tunnel & Underground Space 28(6): 670-691. https://doi.org/10.7474/TUS.2018.28.6.670
  14. Park, J.W., Park, E.S., Kim, T., Lee, C., Lee, J., 2018b, Hydro-mechanical modelling of fault slip induced by water injection: DECOVALEX-2019 Task B (Step 1), Tunnel & Underground Space 28(5): 400-425. https://doi.org/10.7474/TUS.2018.28.5.400
  15. Priest, S.D., 1993, Discontinuity Analysis for Rock Engineering, Chapman and Hall, London, pp. 5.
  16. Rinaldi, A.P., Rutqvist, J., 2019, Joint opening or hydroshearing? Analyzing a fracture zone stimulation at Fenton Hill, Geothermics 77: 83-98. https://doi.org/10.1016/j.geothermics.2018.08.006
  17. Rutqvist, J., 2015. Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings, Geofluids 15: 48-66. https://doi.org/10.1111/gfl.12089
  18. Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.-F., 2007 Estimating maximum sustainable injection pressure during sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis, Energy Conversion and Management 48(6): 1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021
  19. Rutqvist, J., Wu, Y.S. Tsang, C.F., Bodvarsson, G., 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences 39: 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  20. Salimzadeh, S., Paluszny, A., Nick, H.M., Zimmerman, R.W., 2018. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems. Geothermics 71: 212-224. https://doi.org/10.1016/j.geothermics.2017.09.012
  21. Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E., 1980, Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research 16: 1016-1024. https://doi.org/10.1029/WR016i006p01016
  22. Yong, S., Kaiser, P.K., Loew, S., 2010, Influence of tectonic shears on tunnel-induced fracturing, International Journal of Rock Mechanics & Mining Sciences 47: 894-907. https://doi.org/10.1016/j.ijrmms.2010.05.009
  23. Zbinden, D., Rinaldi, A.P., Urpi, L., Wiemer, S., 2017, On the physics-based processes behind production-induced seismicity in natural gas fields, Journal of Geophysical Research: Solid Earth 122: 3792-3812. https://doi.org/10.1002/2017JB014003