DOI QR코드

DOI QR Code

Practical Numerical Model for Wave Propagation and Fluid-Structure Interaction in Infinite Fluid

무한 유체 영역에서의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적 수치 모형

  • Cho, Jeong-Rae (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Han, Seong-Wook (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jin Ho (Department of Ocean Engineering, Pukyong National University)
  • 조정래 (한국건설기술연구원 구조연구본부) ;
  • 한성욱 (한국건설기술연구원 구조연구본부) ;
  • 이진호 (부경대학교 해양공학과)
  • Received : 2021.11.02
  • Accepted : 2021.11.16
  • Published : 2021.12.31

Abstract

An analysis considering the fluid-structure interaction is required to strictly evaluate the seismic behavior of facilities such as, environmental facilities and dams, that store fluids. Specifically, in the case of an infinite domain in the upstream direction, such as a dam-reservoir system, this should be carefully considered. In this study, we proposed a practical numerical model for both wave propagation and fluid-structure interaction analyses of an infinite domain, for a system with a semi-infinite domain such as a dam-reservoir system. This method was applicable to the time domain, and enabled accurate boundary analysis. For an infinite fluid domain, a small number of mid-point integrated acoustic finite elements were applied instead of a general acoustic finite element, and a viscous boundary was imposed on the outermost boundary. The validity and accuracy of the proposed method were secured by comparing analytic solutions of a reservoir having infinite domain, with the parametric analysis results, for the number of elements and the size of the modeling region. Furthermore, the proposed method was compared with other fluid-structure interaction methods using additional mass.

환경시설물, 댐과 같은 유체를 저장하는 시설물을 대상으로 엄밀하게 지진 거동을 평가하기 위해서는 유체-구조물 상호작용을 고려한 해석이 필요하다. 특히, 댐-호소 계와 같이 상류 방향으로 무한 영역을 가지는 경우에는 이를 적절히 고려해야 할 필요가 있다. 본 연구에서는 댐-호소 계와 같은 반무한 유체 영역을 갖는 시스템을 대상으로 무한 영역의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적인 수치 모형을 제시하였다. 시간영역에 적용가능한 방법으로 정확하면서도 경계적인 해석이 가능하다. 무한 유체 영역에 대해서는 일반 acoustic finite element 대신 작은 개수의 mid-point integrated acoustic finite element를 적용하고 최종 경계에는 점성경계를 부과한다. 제안하는 방법의 유효성과 정확성을 검증하기 위해 강체 댐체를 가정한 반무한 호소계를 대상으로 적용하는 요소의 개수, 모델링 영역 크기 등을 매개변수로 해석해와 비교·검증하였다. 제안된 방법을 적용하여 댐-호소 계의 유체-구조물 상호작용을 부가질량을 사용하는 경우와 비교하였다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 환경시설 재난재해 대응기술개발사업의 지원을 받아 연구되었습니다(2019002850003).

References

  1. ABAQUS (2019) ABAQUS Documentation, Dassault Systemes, Providence, RI, USA.
  2. Basu, U., Chopra, A.K. (2004) Perfectly Matched Layers for Transient Elastodynamics of Unbounded Domains, Int. J. Numer. Methods Eng., 59, pp.1039~1074. https://doi.org/10.1002/nme.896
  3. Cho, J.-R. (1998) Seismic Response Analysis of Dam-Reservoir System Considering the Interaction between the Flexible Dam and the Compressible Impound Water, Master's Thesis, Seoul National University.
  4. Chopra, A.K. (1967) Hydrodynamic Pressures on Dams During Earthquakes, J. Eng. Mech. Div., 93(6), pp.205~223. https://doi.org/10.1061/JMCEA3.0000915
  5. Chopra, A.K. (2017) Dynamics of Structures: Theroy and Applications to Earthquake Engineering, 5th Edition, Pearson Education Inc.
  6. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J. (2002) Concepts and Applications of Finite Element Analysis, 4th Edition, John Wiley & Sons. Inc.
  7. Givoli, D. (2004) High-Order Local Non-Reflecting Boundary Conditions: A Review, Wave Motion, 39, pp.319~326. https://doi.org/10.1016/j.wavemoti.2003.12.004
  8. Guddati, M.N., Druskin, V., Astaneha, A.V. (2016) Exponential Convergence through Linear Finite Element Discretization of Stratified Subdomains, J. Comput. Phys., 322, pp.429~447. https://doi.org/10.1016/j.jcp.2016.06.045
  9. PEER Ground Motion Database, accessed Nov 30, 2021, https://ngawest2.berkeley.edu/.
  10. Westergaard, H.M. (1933) Water Pressures on Dams During Earthquakes, Trans. Am. Soc. Civil Eng., 98(2), pp.418~433. https://doi.org/10.1061/TACEAT.0004496