DOI QR코드

DOI QR Code

Development of a Shear Yielding Steel Damper for Concentrically Braced Frames

중심가새골조의 내진성능향상을 위한 전단항복댐퍼의 개발

  • Ghamar, Ali (Department of Civil Engineering, Sharif University of Science and Technology) ;
  • Jeong, Seong-Hoon (Division of Architectural Engineering, Inha University)
  • Received : 2021.11.09
  • Accepted : 2021.11.22
  • Published : 2021.12.31

Abstract

In this study, the use of a steel yielding damper is considered as an appropriate method to enhance the behavior of CBFs and a steel damper which is economical and straightforward to construct and replace after a severe earthquake is developed. The proposed damper was investigated experimentally and numerically. In addition, a parametric study was performed to evaluate the effect of the three types of damper mechanisms (shear, shear-flexural, and flexural) on the behavior of the proposed damper. The experimental results, as well as the numerical results, indicate that the shear damper exhibits better performance than the other dampers in terms of strength and stiffness.

본 논문에서는 중심가새골조의 내진성능 향상을 위한 전단항복 댐퍼의 개발을 수행하였다. 실용성이 높은 댐퍼의 개발을 위해서 구조적 간결성과 내진성능의 신뢰도에 중점을 둔 상세를 제시하기 위해 노력하였다. 지진 발생 시 에너지 소산 메커니즘에 대한 신뢰도가 높고, 지진 발생 후 항복 부위의 교체가 쉬운 형태로 고안되었다. 댐퍼의 끼움강판 치수를 변경함으로써 전단, 휨-전단, 휨 메커니즘을 조절하여 설계할 수 있다. 비선형 유한요소해석을 통해서 댐퍼의 항복 메커니즘에 따른 구조적 거동을 분석하였고, 전단항복 메커니즘 댐퍼가 휨항복 메커니즘 댐퍼에 비해 강성, 강도, 에너지 소산 측면에서 우수한 성능을 가지고 있음을 확인하였다.

Keywords

Acknowledgement

본 연구는 2021년도 행정안전부 재난 안전분야 연구개발사업(지역 맞춤형 재난안전 문제해결 기술개발지원)의 연구비 지원에 의해 수행되었습니다.

References

  1. Bouwkamp, J., Vetr, M.G., Ghamari, A. (2016) An Analytical Model for Inelastic Cyclic Response of Eccentrically Braced Frame with Vertical Shear Link (V-EBF), Case Stud. Struct. Eng., 6, pp.31~44. https://doi.org/10.1016/j.csse.2016.05.002
  2. Deng, K., Pan, P., Wang., C. (2013) Development of Crawler Steel Damper for Bridges, J. Constr. Steel Res., 85, pp.140~150. https://doi.org/10.1016/j.jcsr.2013.03.009
  3. Ghadami, A., Pourmoosavi, G., Ghamari, A. (2021) Seismic Design of Elements Outside of the Short Low-Yield-Point Steel Shear Links, J. Consrt. Steel Res., 178, 106489. https://doi.org/10.1016/j.jcsr.2020.106489
  4. Hu, S., Wang, W., Qu, B. (2020) Seismic Evaluation of Low-Rise Steel Building Frames with Self-Centering Energy-Absorbing Rigid Cores Designed using a Force-Based Approach, Eng. Struct., 204, pp.110~138.
  5. Jaisee, S., Yue, F., Ooi, Y. (2021) A State-of-the-Art Review on Passive Friction Dampers and Their Applications, Eng. Struct., 235, pp.112~122.
  6. Kumar, M., Senthilkumar, R., Sourabha, L. (2019) Seismic Performance of Special Concentric Steel Braced Frames, Struct., 20, pp.166~175. https://doi.org/10.1016/j.istruc.2019.03.012
  7. Park, H., Oh, S. (2020) Structural Performance of Beam System with T-Stub Type Slit Damper, Eng. Struct., 205, 109858. https://doi.org/10.1016/j.engstruct.2019.109858
  8. Richards, P.W., Uang, C.M. (2005) Effect of Flange Width-Thickness Ratio on Eccentrically Braced Frames Link Cyclic Rotation Capacity, J. Struct. Eng., 131(10), pp.1546~1552. https://doi.org/10.1061/(asce)0733-9445(2005)131:10(1546)
  9. Roeder, C.W., Popov, E.P. (1978) Eccentrically Braced Steel Frames for Earthquakes, J. Struct. Div., 104(3), pp.391~412. https://doi.org/10.1061/JSDEAG.0004875
  10. Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W., McNamara, R.J. (2008) Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments, J. Struct. Eng., 134(1), pp.3~21. https://doi.org/10.1061/(asce)0733-9445(2008)134:1(3)
  11. Vetr, M.G., Ghamari, A. (2019) Experimentally and Analytically Study on Eccentrically Braced Frame with Vertical Shear Links, Struct. Des. Tall & Spec. Build., 28, pp.15~87.
  12. Vetr, M.G., Ghamari, A., Bouwkamp, J. (2017) Investigating the Nonlinear behavior of Eccentrically Braced Frame with Vertical Shear Links (V-EBF), J. Build. Eng., 10, pp.47~59. https://doi.org/10.1016/j.jobe.2017.02.002
  13. Wang, C., Qing, Y., Wu, Y., Wang, J., Gu, Z. (2020) Analytical and Experimental Studies on Buckling-Restrained Brace with Gap-Supported Tendon Protection, J. Constr. Steel Res., 164, 105807. https://doi.org/10.1016/j.jcsr.2019.105807
  14. Yang, T.Y., Sheikh, H., Tobber, L. (2019) Influence of the Brace Configurations on the Seismic Performance of Steel Concentrically Braced Frames, Front. Built Environ., 5, pp.1~27. https://doi.org/10.3389/fbuil.2019.00001
  15. Zahrai, S.M. (2015) Cyclic Testing of Chevron Braced Steel Frames with IPE Shear Panels, Steel & Compos. Struct., 19 (5), pp.1167~1184. https://doi.org/10.12989/scs.2015.19.5.1167