• Title/Summary/Keyword: numerical formulation

Search Result 1,594, Processing Time 0.024 seconds

Formulation, solution and CTL software for coupled thermomechanics systems

  • Niekamp, R.;Ibrahimbegovic, A.;Matthies, H.G.
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2014
  • In this work, we present the theoretical formulation, operator split solution procedure and partitioned software development for the coupled thermomechanical systems. We consider the general case with nonlinear evolution for each sub-system (either mechanical or thermal) with dedicated time integration scheme for each sub-system. We provide the condition that guarantees the stability of such an operator split solution procedure for fully nonlinear evolution of coupled thermomechanical system. We show that the proposed solution procedure can accommodate different evolution time-scale for different sub-systems, and allow for different time steps for the corresponding integration scheme. We also show that such an approach is perfectly suitable for parallel computations. Several numerical simulations are presented in order to illustrate very satisfying performance of the proposed solution procedure and confirm the theoretical speed-up of parallel computations, which follow from the adequate choice of the time step for each sub-problem. This work confirms that one can make the most appropriate selection of the time step with respect to the characteristic time-scale, carry out the separate computations for each sub-system, and then enforce the coupling to preserve the stability of the operator split computations. The software development strategy of direct linking the (existing) codes for each sub-system via Component Template Library (CTL) is shown to be perfectly suitable for the proposed approach.

Effects of Air Compressibility on the Hydrodynamic Forces of a Bag (백의 유체역학적 힘과 공기의 압축성 효과)

  • G.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.51-61
    • /
    • 1993
  • The hydrodynamic problem when the pressurized bag submerges partially into water and oscillates was formulated by Lee(1992), and the solution method was given. In his formulation, however, the compressibility of air was neglected and the pressure inside the bag was assumed to be constant. In this paper, the formulation was done including the air compressibility and the wall to block fling around phenomenon. The compression process was assumed to be a isothermal process for a static problem, isentropic process for a dynamic problem. And the stability was analyzed for the static problem. Through the various numerical calculations, the forces and the shape of the bag were compared with those of a rigid body case, constant pressure case, and variable pressure case.

  • PDF

Estimation of Acceleration Response of Freefall Lifeboat using FSI Analysis Technique of LS-DYNA Code (LS-DYNA 코드의 유체-구조 연성해석 기법을 이용한 자유낙하식 구명정의 가속도 응답 추정)

  • Bae, Dong-Myung;Zakki, A.F.;Kim, Hag-Soo;Kim, Joo-Gon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.681-688
    • /
    • 2010
  • During certification of freefall lifeboats, it is necessary to estimate the injury potential of the impact loads exerted on the occupants during water entry. This paper focused on the numerical simulation to predict the acceleration response during the impact of freefall lifeboats on the water using FSI(Fluid-Structure Interaction) analysis technique of LS-DYNA code. FSI problems could be conveniently simulated by the overlapping capability using Arbitrary Lagrangian Eulerian(ALE) formulation and Euler-Lagrange coupling algorithm of LS-DYNA code. Through this study, it could be found that simulation results were in relatively good agreement with experimental ones in the acceleration peak values, and that the loading conditions were very sensitive to the acceleration responses by the experimental and simulation results.

Applicaion of Sensitivity Formulation to Analyze the Dynamic Response due to the Excitation Force for the Undamped Vibration of Cantilever Beam (외팔보의 비감쇠 진동시 가진력에 의한 동적 반응의 민감도 정식화 및 해석)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.29-34
    • /
    • 2020
  • In this study, a sensitivity formulation was applied to analyze the dynamic response due to the effect of the excitation force for the undamped vibration of the cantilever beam. The theoretically fundamental formulations were derived considering an eigenvalue problem and its modal analysis to govern the second order algebraic differential equation in terms of the change in the modal coordinate with respect to the design parameters. A representative physical quantity pertaining to the dynamic response, that is, the rate of change in the dynamic displacement, was observed by changing the design variables, such as the cross-sectional area of the beam. The numerical results were obtained at various locations, considering the application of the external forces and observation of the dynamic displacement. When the detection position was closer to the free end of the cantilever beam, the sensitivity of the dynamic displacement was higher, as predicted through the oscillating motion of the beam. The presented findings can provide guidance to compute the dynamic sensitivity for a flexibly connected structure under dynamic excitations.

Critical buckling moment of functionally graded tapered mono-symmetric I-beam

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.599-614
    • /
    • 2021
  • This study deals with the Lateral-Torsional Buckling (LTB) of a mono-symmetric tapered I-beam, in which the cross-section is varying longitudinally. To obtain the buckling moment, two concentrated bending moments should be applied at the two ends of the structure. This structure is made of Functionally Graded Material (FGM). The Young's and shear modules change linearly along the longitudinal direction of the beam. It is considered that this tapered beam is laterally restrained continuously, by using torsional springs. Furthermore, two rotational bending springs are employed at the two structural ends. To achieve the buckling moment, Ritz solution method is utilized. The response of critical buckling moment of the beam is obtained by minimizing the total potential energy relation. The lateral and torsional displacement fields of the beam are interpolated by harmonic functions. These functions satisfy the boundary conditions. Two different support conditions are considered in this study. The obtained formulation is validated by solving benchmark problems. Moreover, some numerical studies are implemented to show the accuracy, efficiency and high performance of the proposed formulation.

Numerical Formulation of Axisymmetric Shell Element and Its Application to Geotechnical Problems (축대칭 쉘 요소의 유한요소 수식화와 지반공학적 활용)

  • Shin, Hosung;Kim, Jin-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.27-34
    • /
    • 2020
  • Use of axisymmetric shell element for the structure increases the efficiency and accuracy in finite element analysis of the interaction between the ground and the structure. This paper derived the force balance equation and the moment balance equation for an axisymmetric shell element based on Kirchhoff's theory. The governing equation for the axial deformation used the isoparametric shape function in the Galerkin formulation, and the governing equation for the shell bending used the higher-order shape function. The developed axisymmetric shell element was combined with Geo-COUS, a geotechnical finite element program for the coupled analysis with the ground. The accuracy of the developed element was confirmed through the example analyses of the circular plate and the liquid storage tank. And the energy balance equation for the axisymmetric shell element is presented.

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A.;Lekomtsev, Sergey V.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.769-780
    • /
    • 2022
  • This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

A new base shear equation for reliability-based design of steel frames

  • Hakki Deniz Gul;Kivanc Taskin
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The reliability-based seismic design of steel frames is a complex process that incorporates seismic demand with a structural capacity to attain safe buildings aligned with specified constraints. This paper introduces an efficient base shear force formulation to support the reliability-based design process of steel frames. The introduced base shear force equation combines the seismic demand statistics with the reliability objective to calculate a fictitious base shear force for linear static analysis. By concentrating on the seismic demand and promising to meet a certain level of reliability, the equation converts the reliability-based seismic design problem to a deterministic one. Two code-compliant real-size steel moment frames are developed according to different reliability objectives to demonstrate the competency of the proposed formula. The nonlinear dynamic analysis method is used to assess the seismic reliability of the constructed frames, and the numerical results validate the credibility of the suggested formulation. The base shear force calculation method regarding seismic reliability is the main finding of this study. The ease of use makes this approach a potent tool for design professionals and stakeholders to make rapid risk-informed decisions regarding steel moment frame design.

Development of Finite Element Domain Decomposition Method Using Local and Mixed Lagrange Multipliers (국부 및 혼합 Lagrange 승수법을 이용한 영역분할 기반 유한요소 구조해석 기법 개발)

  • Kwak, Jun Young;Cho, Hae Seong;Shin, Sang Joon;Bauchau, Olivier A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.469-476
    • /
    • 2012
  • In this paper, a finite element domain decomposition method using local and mixed Lagrange multipliers for a large scal structural analysis is presented. The proposed algorithms use local and mixed Lagrange multipliers to improve computational efficiency. In the original FETI method, classical Lagrange multiplier technique was used. In the dual-primal FETI method, the interface nodes are used at the corner nodes of each sub-domain. On the other hand, the proposed FETI-local analysis adopts localized Lagrange multipliers and the proposed FETI-mixed analysis uses both global and local Lagrange multipliers. The numerical analysis results by the proposed algorithms are compared with those obtained by dual-primal FETI method.