DOI QR코드

DOI QR Code

A new base shear equation for reliability-based design of steel frames

  • Hakki Deniz Gul (Department of Civil Engineering, Eskisehir Technical University) ;
  • Kivanc Taskin (Department of Civil Engineering, Eskisehir Technical University)
  • Received : 2024.03.05
  • Accepted : 2024.04.26
  • Published : 2024.07.25

Abstract

The reliability-based seismic design of steel frames is a complex process that incorporates seismic demand with a structural capacity to attain safe buildings aligned with specified constraints. This paper introduces an efficient base shear force formulation to support the reliability-based design process of steel frames. The introduced base shear force equation combines the seismic demand statistics with the reliability objective to calculate a fictitious base shear force for linear static analysis. By concentrating on the seismic demand and promising to meet a certain level of reliability, the equation converts the reliability-based seismic design problem to a deterministic one. Two code-compliant real-size steel moment frames are developed according to different reliability objectives to demonstrate the competency of the proposed formula. The nonlinear dynamic analysis method is used to assess the seismic reliability of the constructed frames, and the numerical results validate the credibility of the suggested formulation. The base shear force calculation method regarding seismic reliability is the main finding of this study. The ease of use makes this approach a potent tool for design professionals and stakeholders to make rapid risk-informed decisions regarding steel moment frame design.

Keywords

References

  1. ANSI/AISC 341-16 (2016), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
  2. ANSI/AISC 358-16 (2016), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, American Institute of Steel Construction, Chicago, IL, USA.
  3. ANSI/AISC 360-16 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
  4. ASCE 7 Hazard Tool (2021), USGS Seismic Design Maps Data Prepared in Collaboration with ASCE and the Building Seismic Safety Council; American Society of Civil Engineers, Reston, VA, USA. https://asce7hazardtool.online/
  5. ASCE/SEI 7-16 (2016), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  6. Aval, S.B.B., Farrokhim, A., Fallahm, A. and Tsouvalasm, A. (2017), "The seismic reliability of two connected SMRF structures", Earthq. Struct., 13(2), 151-164. https://doi.org/10.12989/eas.2017.13.2.151.
  7. Azar, B.F., Hadidi, A. and Rafiee, A. (2015), "An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions", Struct. Eng. Mech., 55(5), 979-999, https://doi.org/10.12989/sem.2015.55.5.979.
  8. Engelund, S. and Rackwitz, R. (1993), "A benchmark study on importance sampling tecniques in structural reliability", Struct. Saf., 12(4), 255-276. https://doi.org/10.1016/0167-4730(93)90056-7.
  9. Faravelli, L. (1989), "Response-surface approach for reliability analysis", J. Eng. Mech., 115, 12. https://doi.org/10.1016/0167-4730(90)90012-E.
  10. FEMA 350 (2000), Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Federal Emergency Management Agency, Washington, D.C., USA.
  11. FEMA 445 (2006), Next-Generation Performance-Based Seismic Design Guidelines, Federal Emergency Management Agency, Washington, D.C., USA.
  12. FEMA 450 (2004), NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Part I: Provisions, Federal Emergency Management Agency, Washington, D.C., USA.
  13. FEMA P-58-1 (2006), Seismic Performance Assessment of Buildings: Volume 1-Methodology, Federal Emergency Management Agency, Washington, D.C., USA.
  14. FEMA P-695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, D.C., USA.
  15. Gaxiola-Camacho, J.R., Azizsoltani, H., Villegas-Mercado, F.J. and Haldar, A. (2017), "A novel reliability technique for implementation of performance-based seismic design of structures", Eng. Struct., 142, 137-147. https://doi.org/10.1016/j.engstruct.2017.03.076.
  16. Ghobarah, A. (2001), "Performance-based design in earthquake engineering: State of development", Eng. Struct., 23(8), 878-884. https://doi.org/10.1016/S0141-0296(01)00036-0.
  17. Hadidi, A., Azar, B.F. and Rafiee, A. (2016), "Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations", Earthq. Struct., 11(4), 701-721. https://doi.org/10.12989/eas.2016.11.4.701.
  18. Haldar, S. and Mahadevan, A. (2000), Reliability and Statistical Methods in Engineering Design, John Wiley & Sons Inc., Hoboken, NJ, USA.
  19. Khuri, A.I. and Cornell, J.A. (1996), Response Surfaces: Design and Analysis, 2 nd Edition, CRC Press, Boca Raton, FL, USA.
  20. Koduru, S.D. and Haukaas, T. (2010), "Feasibility of FORM in finite element reliability analysis", Struct. Saf., 32(2), 145-153. https://doi.org/10.1016/j.strusafe.2009.10.001.
  21. Kottke, A. and Rathje, E.M. (2008), "A semi-automated procedure for selecting and scaling recorded earthquake motions for dynamic analysis", Earthq. Spectra, 24(4), 911-932. https://doi.org/10.1193/1.2985772.
  22. Liu, P.L. and Der Kiureghian, A. (1991), "Optimization algorithms for structural reliability", Struct. Saf., 9(3), 161-177. https://doi.org/10.1016/0167-4730(91)90041-7.
  23. Maddah, M.M. and Eshghi, S. (2020), "Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames", Earthq. Struct., 18(3), 367-377. https://doi.org/10.12989/eas.2020.18.3.367.
  24. McKenna, F., Fenves, G. and Scott, M.H. (2000), Open System for Earthquake Engineering Simulation (OpenSees), University of California, Berkeley, CA, USA.
  25. Melchers, R.E. and Beck, A.T. (2018), Structural Reliability Analysis and Prediction, 3rd Edition, John Wiley & Sons Inc., Hoboken, NJ, USA.
  26. Moehle, J. and Deierlein, G.G. (2004), "A framework methodology for performance-based earthquake engineering", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, August.
  27. Monjardin-Quevedo, J.G., Reyes-Salazar, A., Tolentino, D., Gaxiola-Camacho, O.D., Vazquez-Becerra, G.E. and Gaxiola-Camacho, J.R. (2022), "Seismic reliability of steel SMFs with deep columns based on PBSD philosophy", Struct., 42, 1-15. https://doi.org/10.1016/j.istruc.2022.06.001.
  28. Nikolaidis, E. and Burdisso, R. (1988), "Reliability based optimization: A safety index approach", Comput. Struct., 28(6), 781-788. https://doi.org/10.1016/0045-7949(88)90418-X.
  29. Papaioannou, I. and Straub, D. (2021), "Variance-based reliability sensitivity analysis and the FORM α-factors", Reliab. Eng. Syst. Saf., 210, 107496. https://doi.org/10.1016/j.ress.2021.107496.
  30. Porter, K., Kennedy, R. and Bachman, R. (2007), "Creating fragility functions for performance-based earthquake engineering", Earthq. Spectra, 23(2), 471-489. https://doi.org/10.1193/1.2720892.
  31. Rajashekhar, M.R. and Ellingwood, B.R. (1993), "A new look at the response surface approach for reliability analysis", Struct. Saf., 12(3), 205-220. https://doi.org/10.1016/0167-4730(93)90003-J.
  32. Rossum, G.V. (1995), "Python tutorial", Technical Report CS-R9526; Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands.
  33. Roudak, M.A., Karamloo, M., Shayanfar, M.A. and Ardalan, R. (2023), "A non-gradient-based reliability method using a new six-item instruction for updating design point", Struct., 50, 1752-1766. https://doi.org/10.1016/j.istruc.2023.03.012.
  34. Shinozuka, M. (1983), "Basic analysis of structural safety", J. Struct. Eng., 109(3), 721-740. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:3(721).
  35. Shome, N. and Cornell, C.A. (1999), "Probabilistic seismic demand analysis of nonlinear structures", RMS Report-35; Reliability of Marine Structures Group, Stanford University, Stanford, CA, USA.
  36. Singh, V.P., Jain, S.K. and Tyagi, A. (2007), Risk and Reliability Analysis: A Handbook for Civil and Environmental Engineers, American Society of Civil Engineers, Reston, VA, USA.
  37. Strong Ground Motion Database (2024), Pacific Earthquake Engineering Research Center (PEER), University of California at Berkeley, Berkeley, CA, USA. https://ngawest2.berkeley.edu/
  38. Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
  39. Vamvatsikos, D. and Cornell, C.A. (2004), "Applied incremental dynamic analysis", Earthq. Spectra, 20(2), 523-553. https://doi.org/10.1002/eqe.935.
  40. Xian, J. and Wang, Z. (2024), "Relaxation-based importance sampling for structural reliability analysis", Struct. Saf., 106, 102393. https://doi.org/10.1016/j.strusafe.2023.102393.
  41. Xiang, Z., He, Z., Zou, Y. and Jing, H. (2024), "An importance sampling method for structural reliability analysis based on interpretable deep generative network", Eng. Comput., 40, 367-380. https://doi.org/10.1007/s00366-023-01790-2.
  42. Yang, M., Zhang, D. and Han, X. (2020), "New efficient and robust method for structural reliability analysis and its application in reliability-based design optimization", Comput. Method. Appl. Mech. Eng., 366, 113018. https://doi.org/10.1016/j.cma.2020.113018.
  43. Yang, M., Zhang, D., Jiang, C., Han, X. and Li, Q. (2021), "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems", Reliab. Eng. Syst. Saf., 215, 107736. https://doi.org/10.1016/j.ress.2021.107736.
  44. Zhao, W., Qui, Z. and Yang, Y. (2013), "An efficient response surface method considering the nonlinear trend of the actual limit state", Struct. Eng. Mech., 47(1), 45-58. https://doi.org/10.12989/sem.2013.47.1.045.
  45. Zhu, M., McKenna, F. and Scott, M.H. (2018), "OpenSeesPy: Python library for the OpenSees finite element framework", SoftwareX, 7, 6-11. https://doi.org/10.1016/j.softx.2017.10.009.