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Abstract

The hydrodynamic problem when the pressurized bag submerges partially into water and
oscillates was formulated by Lee(1992), and the solution method was given. In his formu-
lation, however, the compressibility of air was neglected and the pressure inside the bag
was assumed to be constant.

In this paper, the formulation was done including the air compressibility and the wall to
block fling around phenomenon. The compression process was assumed to be a isothermal
process for a static problem, isentropic process for a dynamic problem. And the stability was
analyzed for the static problem. Through the various numerical calculations, the forces and
the shape of the bag were compared with those of a rigid body case, constant pressure case,
and variable pressure case.
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1. Introduction

The stern bag of SES plays an important role in
preventing the air from leakage out of the
cushion chamber, and this is very effective be-
cause of its flexibility. The bag also has an effect
on the motion of the craft, especially on the pitch
motion,

Ozawal[1] studied the dynamic characteristics
of the seal system of SES by theoretical method
and experiments, however in his study the hydro-
dynamics is not included. The hydrodynamics of
the bag submerged partially into water was
formulated and calculated by Lee[2], but he
assumed a constant pressure in the bag, so the
compressibility of air was ignored.

The hydrodynamics of a bag has peculiar
characteristics : the boundary condition on the
bag is represented globally not point-wisely and it
has a very complex form because the pressure
change in certain portion of a bag affects the
shape of the bag on the whole. And it is a moving
boundary like a free surface boundary so the
treatment of it is difficult.

The motion of a bag can be divided into two
modes by its mechanism, one is due to the pre-
ssure change in the bag, and the other due to the
movement of structure to which the bag is at-
tached. In the latter case, the pressure in the
bag can be constant or variable. It is almost con-
stant when the air of the bag is fed by a huge
reservoir and the opening area to the bag is large,
and when the opening of the bag is closed the
pressure inside is to be varied in order to satisfy
the state equation of air. There are two processes
in compression-expansion, isothermal process and
isentropic pprocess, For static problem, it is
assumed to be isothermal because there is enough
time to flow out the resulting heat, and for dy-
namic problem isentropic because there is too
short time to flow out the resulting heat totally.

In this paper, the static and dynamic problem
were formulated including the compressibility of
air. Because most bags are made of fiber, the
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mass of the bag and girth-wise elongation were
ignored. And the hydrodynamic problem is
treated by a potential theory. The wall to block
the ‘fling around’ is included, and the static stab-
ility was analyzed more thoroughly. Through a
number of numerical calculations, the comparison
was done with rigid body, compressible air, con-
stant pressure cases.

2. Static Problem

In this chapter, the shape and the static prob-
lem were studied for a pressurized bag submerged
partially into water. The pressure in the bag may
remain constant, or may be varied because of the
compressibility of air. The isothermal process is
assumed, and the mass of a bag and elongation in
girth-wise length are ignored like Lee[2].

2.1 The Shape of a Bag
Suppose that there is no tangential force on the
surface of a bag, so the tension is constant along
the perimeter. The shape of a bag and coordinate
system is shown in Fig. 1

Fig. 1 Shape of a bag and coordinates

The end points of a bag are attached to the
structure, these points are denoted by point 4, B
and their positions are (x4, ya4), (xs ys). The
angles between the tangential direction of the
bag and x-axis are 64, 85 at end points, and 6(/)
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between them, Here [/ is the girth-wise length,
and total length is L. If the bag is overlapped
with the wall, the angles at end points are w4, 0
ws, and the overlapping lengths are /4, Ip respec-
tively.

The relationship of the pressure, tension, cur-
vature of the bag is given by the following
Laplace formula[3].

T
Pb"PZI—2 (D

where P, is the pressure in the bag, P out of
the bag, T tensile force, R radius of curvature,
The definition of radius of curvature is the re-
ciprocal of the derivative of tangential angle with
respect to arc length, so the tangential angle can
be obtained from it,

10

S |
‘/()Edu+04 )
- [B—Pu)
- -/0 T du+0A

and when the bag is overlapped with the wall, it
is

fwa <y
gy ={ Owa+ T [ (A—Plu))du la<i<L-Ip
bwa+ T~ L2 (P - Plu))du 1> L1l

(3)

6wa = 64 when Iy = (. The shape of the bag
can be represented by use of this angle as

z(l) = /: cos(f(u))du + z4

y(l) = /0 ' sin(8(w))du + ya

Once the two points 4, B and length L and
pressure difference are given, the shape can be
obtained. The unknowns are T, 84 for the /4 = 0,
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or T, I4 for I4 > 0. For the mathematical con-
venience, introduce the generalized 64.

0. = 0,4 iflAZO (5)
4 I, ifly>0 5

The following state equation ot air is to be used
when the compressibility of air is included.

PV = const

Above equation is for the isothermal process.
In the static problem, there is enough time to
flow out the resulting heat totally, so the assump-
tion of isothermal process is reasonable. Including
the compressibility, the pressure inside P is also
an unknown to be sought for, thus three
unknowns can be found from three eauations be-
low,

fi = z(L)—zp=0
f2 y(L) —yp =0 (6)
fs = PV —PoVy=0

Il

where the volume inside is

v g y%’;au + 504+ y(E)) (24 - 2(L)

The pressure outside bag has a value P(/) =
~pgy( £ )only in the portion below the free sur-
face y = 0. Eq.(6) are non-linear equations, the
unknowns are obtained using Newton-Raphson
method.
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The derivatives used in the above equations
are derived in Appendix A, The intial guesses are
given as the same manner as in the work of Lee

[2].

2.2 Static Stability
The stability of the static equilibrium state of a
bag is analyzed here.

Fig. 2 Forces and shape of a bag

Firstly, suppose the case that the bag is not
overlapped with the wall. The external force on
the bag is

f: = —Tcosby+ Tcoslp

fy = —Pd+ Buoy—Tsinf, (8)
+ T'sinfp
If the shape is symmetric in y-axis, 64 = —0s,

so the force in the x-direction vanishes. When an
infinitesimal force in the x-direction exists, the
angles are changed by an amount of Af4, Afsre-
spectively, and these changes are positive.

The change in f; is

Afz = TsinﬂAAOA - Tsin03A0B (9)

For the case that 6z < =, Af; is negative and
its direction is opposed to the direction of move-
ment, so the positive restoring results out. The
static instability takes place when 83 > =7, and a
neutral state when 0p = =.

Secondly, suppose the case that the bag is
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overlapped with the wall. Similarly, the external
force on the bag is

f: = —Tcosbys+ Tcosbwsp
—Pyl,sinby 4 — Pylgsinfyp
—~Pyd+ Buoy — Tsinfw 4

+ T'sinfwp +Pyls cosOwa

—~ Bylgcoslyp (10)

fv‘_"

If the shape is symmetric, w4 = —6wps. When
an infinitesimal force in the positive x-direction is
applied, the overlapped length are changed by an
amount of Aly4, Alp, shere Al4is negative, Alg posi-
tive. The change in fx is

Afz = —PbAlA sin 0WA - PbAlB sin GWB
an

From the above equation, it can be said that it
is stable when 0w < =, unstable when Owg > =,
neutral when 6ws = n. This result is the same as
the case of no wall.

3. Dynamic Problem

The hydrodynamic problem when the bag
moves is treated here. The motion of a bag can
be divided into two modes by its mechanism, one
mode is due to the pressure change in the bag,
and the other due to the movement of structure
to which the bag is attached. In the latter case,
the pressure in the bag can be constant or vari-
able, including the compressibility of air it is to
be varied in order to satisfy the state equation
of air, and an isentropic process is assumed.

3.1 Shape Change due to Pressure Change

In order to obtain the boundary condition on the
bag, the shape change due to the pressure
change in and out has to be known before,

Firstly, suppoes the case that the pressure in
the bag is changed. The change of Py results in
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the changes of T, 84, and the shape. Denote the
change of P, by dPs, and the shape by dX;, dY,.
Even though P, changes, the end points of the
bag remain at the same points, that is, the first
two equations in Eq. (6) nust hold.

The differentials of them are

dz(L) dz(L) az(L) _
3B, ht S T+ 5 =0
dy(L) dy(L) 9y(L) 4

= 0
3R, —p 4P+ —5odT + aoA

(12)

dT, d84 can be obtained from the above equa-
tions,

dT oo(L) o2(e) 17V ( 02(L)
{do,.}=“ o) i) ol 9P

8T 38, aF,
(13)
The change of the shape is
az(l) 6:::(1) 81:(1)
dX1(l) =37 dT + ETA di, + 3P, dpb,
(14)
ay(!) dy() oy(") ,p
le(l) =37 dT + ETH di, + aP
(15}

Substituting Eq. (13) into above equations, dX1
(1), dY1(1) can be represented by only one vari-
able P». The derivatives used in above equations
are derived in Appendix A.

Secondly, let us seek the shape change due to
variations of the outside pressure, Hereafter the
equations are derived for the case of compressible
air, if the constant pressure is wanted it is
achieved by setting dP» = 0, V = const. In the
isentropic process, the state equation of air is

PV - PV, =0 (16)
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where y is the specific heat of air, its value is
1.4 for dry air. The differentials of the first two
equations in Eq.(6) and the above equation are as
follows.

a;(}f) dP + az(TL) dT + a;lgf) o, + agnf) dP, =0
aggf) dP + ag(TL) dT + aggf) din+ aayg:) dP, =0
g}:-dp dT+a d04+(‘;’+§¥;)dﬂ=o

(17)

dT, dB4, dP, can be obtained from the above
equations as follows.

AR EARE T
do, b =— L) 4p
dF, H?"fl 1A W ch

(18)

The derivatives used in above eauations are de-
rived in Appendix A. and B. Because dP({) is a
function, derivative with respect to dP(l) is
somewhat different from that with respect to a
scalar, and it has to be obtained in the distri-
bution sense, Thus derivatives with respect to a
function dP(/) is linear operators not values, Ap-
pendix B. contains more details. The shape
change of the bag can be obtained as follows,

dz(l) = ‘9’(') a;;') g, + a;g)dP + a;}(j)
dy(l) = ay(‘)dT + (i;’;l)dﬂ + a;,l()z) an+ 20 qp

(19)

Using Eq.(18), the above equations are rewritten
as follows.

220\ T
! A

dz(l) = a;;)dP+ %;ﬁl df,

az(l) dP,

= L,-dP (20)
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dy(l) = ) 4p 4 %?’,E dl4
op av(l) dP,

(21)

where L,, L, are linear operators.

3.2 Boundary Condition

The bounfary condition on the surface of a rigid
body is well known and simple, but on the surface
of a flexible body, like a pressurized bag, the
boundary condition has a complicated nature[2].
In the previous section, the shape change due to
the change of pressure is given, but practically in
a fluid the bag can not make such shape change
because of the static and dynamic pressure in the
fluid.

P = —pgy — pd, fory <0
where ¢ is a velocity potential. The motion ex-
cluding this dynamic condition, that is, the move-
ment due to the change of the pressure in the
bag and due to the movement of the end points
is represented by

dXg(l) =
dYg(l) =

dX, (1) + dX,

dYy(l) + dY; @

where dXi, dY; are the shape changes due to
the pressure inside, and dX3 dYg are the motion
displacements due to the movement of its end
points. If the compressibility of air is included,
dXi1, dY1 need not to be considered. The actual
displacement of the surface of a bag is as follows,
using the dynamic condition.

dy = L, -dP +dYg
= —pgL;, -dy — pL; - dé; + dYE

dy = [T+ pgL;| "' [—pLy - dg; + dYF]
(23)

olAF

in which [7is an identity operator and L% is an
operator which is reduced from Ly by ignoring
the part of y > 0. Similarly dx can be obtained as
follows,

dz = L, -dP+dXg
—pLy[I + pgL;) 'dy (24)
—pgL;[I + pgL;) 'dYg + dXE

Only the portion y < 0 is required to solve the
boundary value problem, Examining the above
two equations closely, we know that the portion
y > 0 has no effect on the portion y < ( because
the pressure remains constant over the portion
y > 0. Thus we can rewrite the equations only
fory < 0.

dz* = —pK,[I+ pgK,| 1d¢,
—pgK.[I + pgK,| " dYy + dX5
dy* = [I+ pgK,| ' [-pK,d¢: + dYp)

(25)

where K, K, are the linear operators which are
reduced from L% L% by ignoring the part of
» > 0, and defined only on the portion y < 0,

The kinematic condition is

*
¢n = nz$:+nyyt

) (26)
= anét + CVYEt h C¢¢u

where
C, = [n,— n.pg K;|[I + pgKv]‘l
Cy = [n.pK.[I+ pgK,]™!

+nyp[l + pgK,]'le]

The boundary condition can be represented glo-
bally as shown above. Above boundary condition
seems to be similar to that of free surface, but it
is global while that of free surface is point-wise,

Transactions of SNAK, Vol. 30, No. 3, August 1993
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3.3 Boundary Value Problem

In the framework of potential theory, the
governing equation is Laplace equation, and there
must exist boundary condition on the whole
boundary. This boundary value problem is
summarized as follows,

V¢ = 0 in fluid domain
$y+1/gdy = 0 on y=0 (27)
¢rl + C‘¢“ = anE:g + CyYE’g

on the Surface of the bag

and appropriate radiation condition, The sol-
ution of this boundary value problem can be
obtained by Green’s identity

#(P) = [ {Gua(P,Q)#(Q) - G(P,Q)¢n(@)}d5(Q)
(28)

where P is the field point and Q source point,
and G(P, Q) is the fundamental solution of
Laplace equation which satisfies the free surface
boundary condition and the radiation condition
{4]. Discretizing the submerged surface of the
bag, assuming that the values of ¢, ¢, are con-
stant over each segment and equal to the values
at midpoint, and performing integration over each
segment analytically, the above equation becomes
the matrix equation below.

{8} = [Gal{¢} — [GI{¢n} (29)

Suppose the case of time harmonic motion.
Substituting the boundary condition into the
above equation results in

[I - Gu + w'GCy|{} = —[Gl{n. X}, + C,Y3,}
(30

After discretization, the operator Cy, C, turn into
matrices and ny, n, diagonal matrices, Once the
solution of the above equation is found, the press-
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ure on the surface of a bag can be calculated by

dP = -—pgdy — pd¢,
= —plI + pgK,|"{gdYg + d¢,}
fory <o
(31)

The first term of the above equation is static
pressure and the second term is hydrodynamic
pressure. The force acting on the bag is
calculated by integrating 4P on the surface of it,
Substituting the above equation into Eq.(20),
(21), we can obtain the shape change of the bag,
and into Eq.(18), the tension, 04, Ps.

4. Numerical Results

All calculations were carried out with single
precision on the 1386 based PC. The total length
of the perimeter of a bag was divided into 100
elements And non-dimensionalization is as follows
: perimeter length L/d, submerged depth depth/d,
volume inside V' = V/&, submerged area A’ =
Ald®, pressure inside P’ = P,/pgd, tension TW =

Tlpd, frequency w/ vg/d added mass a/pd’,

damping coefficient b/pd*~ gld .

4.1 Static Problem
All integrations used for the static problem were
performed by the trapezoidal method. Lee[2]
used the modified Newton method to solve the
non-linear equations, however in this paper, the
conventional Newton-Raphson method makes no
problem in solving them because the wall to block
‘fling around’ makes the solution scheme more
stable. But the special numerical treatment is
required when the bag starts to be overlapped
with the wall.

The shapes of a bag with various submerged
depths are shown in Fig. 3 and Fig. 4. The results
for constant pressure are in Fig. 3 and for com-
pressible air in Fig. 4. Comparing two cases, it is
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2 - 0 1 x 2

Fig. 3 The shape of a bag with various depths, con-
stant pressure case

2 i
| L/d=5
y p'=0.5
1 =
0
R i " 1 .
2 -1 0 1 X 2

Fig. 4 The shape of a bag with various depths, In-
cluding air compressibility

Static Properties

0 0.5 1 1.5

depth/d 2

Fig. 5 Static properties of a bag with changing
depth, solid line-air compressibility, dashed
line-constant pressure

°13%

known that the shapes are similar for small
depths, but as the depth increases the shape
change is smaller and the bottom position is lower
in the case of compressible air. This is due to the
fact that the inside pressure grows as the depth
increases,

In Fig. 5, the inside volume, submerged area,
tension, inside pressure are drawn for the various
submerged depth. Including the compressibility
of air, it can be said that all values are larger
than those for the constant pressure case. The
buoyancy force can be obtained by multiplying
the submerged area by pg, and the restoring force
by differentiating this with respect to depth, so
the restoring force is proportional to the slope of
the submerged area. For the constant pressure,

the slope is nearly constant while the length of

water line increases, but for the compressible air
the slope grows large as the depth increases, and
therefore larger restoring force than that of con-
stant pressure case.

4.2 Dynamic Problem

The heave added mass and damping of a bag
are shown in Fig. 6 and Fig. 7. In low frequency,
the added mass and damping have similar
behavior to those of rigid body while their values
are small. As the pressure increases, the added
mass and damping become close to that of rigid
body. The effect of compressibility is not shown
significantly. In the medium frequency ranging
from 1.5 to 2.7 for the Fig. 6 and Fig. 7 the added
mass and damping behave quite strangely, this
phenomenon seems to be a resonance of the bag.
The bag itself is a spring-mass-damper system be-
cause the bag above the free surface has a similar
role of spring. Therefore the bag has a natural
frequency, and as the pressure inside grows
large, tension increases, and does the equivalent
spring constant. As the result, the resonant fre-
quency of high pressure is higher than that of
low pressure. The possibility of irregular fre-
quency has been considered, but this is not the
case because the submerged shape is nearly the

Transactions of SNAK, Vol. 30, No. 3, August 1993
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. Heave Added Mass

L/d=5, depthyd=0.5

1
0 1 é 3w\/‘79_4

Fig. 6 Heave added mass & damping for constant
pressure, non-dimensioned pressures are
25, 0.5, 0.75, 1.0, 1.5, dashed lines for rigid
pody of same shape(p’ = 1).

L/d=5, depth/d=0.5

. Heave Added Mass

: { ‘

Heave Damping

25 Y ] 3 widig 4

Fig. 7 Heave added mass & dsamping for com-
pressible air, non-dimensioned pressures
are 0.25, 0.5, 0.75, 1.0, 1.5, dashed lines for
rigid body of same shape(p’ = 1).
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same so the irregular frequency must remain near
a certain frequency, and the added mass and
damping of the rigid body of same shape in the
range under considering have a smooth behavior,
Thus this phenomenon can not be considered as
that of irregular frequency. Therefore author
concluded that this is the resonance of the bag,
but a more careful study on this phenomenon
must be done.

5. Conclusions

In this paper, the static and dynamic problem
was analyzed including the compressibility of air
when a bag filled with pressurized air submerges
into water. This problem has some distinct nature
: both the kinematic and dynamic conditions are
required for the boundary condition on the sur-
face of a bag because the surface of a bag can be
deformed easily by the pressure acting on it, and
the boundary condition is represented not locally
but globally.

In this paper, the formulation was done in the
framework of potential theory including the com-
pressibility of air, and the wall to block ‘fling
around’ is included. Following conclusions are
drawn :

1. The effect of air compressibility was shown in
static problem especially in large depth, but in
dynamic problem the effect is small.

2. The added mass and damping behaves stran-
gely near a certain frequency, this behavior
seems to be a resonance of the bag not an ir-
regular frequency phenomenon,

Author hopes advances in the resonance of a
bag, and the application to the stern bag of SES.
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Appendix A
Derivatives w.r.t. Scalar

The definition of the tangential angle 8(/) is
given in Eq.(3). Derivative of 8(/) with respect to
a generalized 64 is, for 14 = 0,

a0(1)

1 A
a0, (A1)

for 14 > 0,

0 1<y
a(l) _ ~{P~P(lA)}/T la<l<L-lp
80,4 —{P,~P(A)}/T I>L—Ip

(A.2)

Derivative of 8(/) with repect to T, Ps.

0 <y,
a—;g-)- = { ~T-? Il' {P. - P(u)}du la<l<L- g
—T—’fh_ n{P. - P(u)}du I>L-Ig
(A.3)
0 1<y,
9;7(,'l= (-1/T la<l<L-ls (Ad4)
‘ (L-—IB—IA)/T l>L—lB

Derivatives of x, y

L
z(l) = z(l) +4y(l) = /o Oy + 24 + iya

(A.5)
az(l) - iO(u)-ao(v)
az(l) U o), 00(v)
N7 - 10y —_— A'
30, /e 1 » dv (A7)

o1 AF

‘.
aZ(l) — / ele(v)iaaog)) dv
0 3

aP, (A.8)

Derivative of Volume ¥V

Vo= [CvGd e St (D)o - (D)

(A.9)
aV_ Ay(!) dz(i d dz(l
o=l {0 50
3 {2 e 20 - (s vy 242
(A.10)
av ay(l) dz(i 8 dx(l
80, /{y = )aa,.“%}‘”

'

(24 - 2(L)) - (va + y(L)) a"””}

(A.11)
av L [ay(l) dz(l) 8 dz(l)
a5 = | {31»—7”(”5?,7}‘”
5 | Zopea ol - o +vien 2222
(A12)
where da;gl) = cos(6(1))
ad dz(l ao(l
;,—T—% = —sin(o()) 220)
8 dz(l) ao(z)
20 o = —sin() 5=
00, dl
9 da(l) ao(z)
37 A - sin(6(1)) 3P,
Appendix B

Derivatives w.r.t. a Function

When a function f is a function of P(J), the
change of f due to a change of P, dP(l) can be
obtained in the following manner. The derivative
of f w.r.t. P when P is varied at one point [ = s

Transactions of SNAK, Vol. 30, No. 3, August 1993
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by an amount of AP - 6{/ — s) is

(W) im [P0 +AP-8( - s)) - F(P(1)
apP AP—o0 AP

(B.1)

This has a similar meaning with an

impulse-response function, Therefore the change
of fdue to dP(I) can be obtained as follows,

dP / ( ) (I — ) - dP(l)ds

(B.2)

The derivative of § w.r.t.Pis

(30) (1-s8) = __H(l ~-s) (B3
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With this result, the change due to dP can be
obtained.

Wap = [H{ [ i (2) 0o o) -apiora

fo ‘ { / ' e"(”)Tdv} - dP(s)ds

1

(B.4)

aer= L {(38) 4 oo (43 )«

3] (Z2) (a2t - 0+ wion (3221 ]

dP(s)ds

(B.5)



