• Title/Summary/Keyword: numerical errors

Search Result 881, Processing Time 0.03 seconds

Study on the Estimation of the Optimum Trims in Container Carriers by using CFD Analysis of Ship Resistances (CFD 저항 해석을 이용한 컨테이너선 최적 트림 추정법에 대한 연구)

  • Park, Sang Hun;Lee, Sang Bong;Lee, Youn Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.429-434
    • /
    • 2014
  • The main objective of the present study is to elucidate a correlation between ship resistances from computational fluid dynamics (CFD) and brake horse powers (BHP) from towing tank in container carriers. The tests were conducted for a range of combinations of trim conditions and speeds. To achieve this goal, 295 cases of numerical simulation have been performed using Star-CCM+ which had been statistically verified to predict ship resistances (Lee & Lee, 2014). Based on the normal distribution of resistance errors in all cases of the 4 container carriers, the confidence interval of numerical error was estimated as [-2.33%,+2.42%] with 95% confidence. The correlation coefficients between the ship resistances of CFD and the brake horse powers of the experiments were higher than 0.93. As a result, the numerical calculation of ship resistances is able to be utilized in order to provide a quick guidance in selection of the optimum loading condition.

A Note on the Proper Size of a Finite Element for Analysis of Harbor Resonance Problems (항만부진동 해석을 위한 적정 유한요소 크기에 대한 소고)

  • 정원무;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.86-93
    • /
    • 2002
  • In this study, numerical experiments were performed to decide the proper size off finite element for the analysis of harbor resonance problems. Various sizes of finite elements were considered from 1/3 to 1/60 of wavelength to model a fully opened rectangular harbor. Through the numerical results, the proper number of finite elements per wavelength were revealed to be nine within two percents errors allowed in resonant period and amplification ratio, while twelve within one percent error. It was fecund that error rates of resonant periods decrease linearly, while those of amplification ratio decrease with oscillating form as the size of an element decreases. The error of amplification ratio increases more rapidly than that of resonant period in case of element numbers below nine.

Numerical models for stress analysis of non-uniform corroded tubular members under compression

  • Chinh, Vu Dan;Nguyen, Ha Thi Thu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.517-530
    • /
    • 2022
  • In re-assessing the Jacket-type fixed steel structures, the current standards often allow the simplicity of corrosion sections using local buckling or equivalent section approach to applying empirical formulae of frame stress and resistance analyses. However, those approaches can lead to significant errors for non-uniform corroded frames in a specific area, including force distribution, stress, and allowable strength of the tubular section, compared to the actual cases. This paper investigates a suitable approach to determine the actual stress on non-uniform corroded tubular frames under compression through the non-linear ABAQUS model by considering the effect of large deformation on the frame axis and the frame section. There are 3 scenarios of interest. In the 1st and 2nd scenarios with simple corrosion cases, the stress ratios using the numerical model and theoretical formulae correspond to the calculation of allowable strength reduction ratios in standards. However, scenario 3, which describes non-uniform corroded sections based on survey data, provides considerable differences in results. Therefore, it proves the reliable and effective results when using this method to analyze the resistance of the actual corroded section in the Jacket platforms.

CNC Twisted Tube Method for 3D Coordinate Control Technology for Freeform Structure -Focused on The ARC in DaeGu- (비정형구조의 3차원 좌표제어를 위한 CNC Twisted Tube 공법 적용 -대구 대표물문화관(The ARC)를 중심으로-)

  • Ryu, Han-Guk;Kim, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.434-440
    • /
    • 2013
  • Generally, the envelope of a freeform building is composed of a structure made with rectangular or C-shaped steel pipe, and steel or aluminum panel finishes on the structure. However, these construction methods increase material loss and cost and time. There are also numerous cases of misunderstanding of design and difficulties in construction, which frequently cause construction errors. Such construction errors decrease construction productivity, resulting in poor construction quality and the need for rework, as well as cost and time overruns. To solve the problem, this study proposes a 3D coordinate control technology for freeform structure implemented through a CNC(Computerized Numerical Control) Twisted tube method, and by extension, develops a BIM-based envelope construction method for freeform building.

The Bayesian Analysis for Software Reliability Models Based on NHPP (비동질적 포아송과정을 사용한 소프트웨어 신뢰 성장모형에 대한 베이지안 신뢰성 분석에 관한 연구)

  • Lee, Sang-Sik;Kim, Hee-Cheul;Kim, Yong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.10D no.5
    • /
    • pp.805-812
    • /
    • 2003
  • This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process (NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP; expressions are given for several performance measure. The parametric inferences of the model using Logarithmic Poisson model, Crow model and Rayleigh model is discussed. Bayesian computation and model selection using the sum of squared errors. The numerical results of this models are applied to real software failure data. Tools of parameter inference was used method of Gibbs sampling and Metropolis algorithm. The numerical example by T1 data (Musa) was illustrated.

The Convergence of Accuracy Ratio in Finite Element Method (유한요소법의 정도수렴)

  • Cho, Soon-Bo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.85-90
    • /
    • 2003
  • If we use a third order approximation for the displacement function of beam element in finite element methods, finite element solutions of beams yield nodal displacement values matching to beam theory results to have no connection with the number increasing of elements of beams. It is assumed that, as the member displacement value at beam nodes are correct, the calculation procedure of beam element stiffness matrix have no numerical errors. A the member forces are calculated by the equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$, the member forces at nodes of beams have errors in a moment and a shear magnitudes in the case of smaller number of element. The nodal displacement value of plate subject to the lateral load converge to the exact values according to the increase of the number of the element. So it is assumed that the procedures of plate element stiffness matrix calculations has a error in the fundamental assumptions. The beam methods for the high accuracy ratio solution Is also applied to the plate analysis. The method of reducing a error ratio of member forces and element stiffness matrix in the finite element methods is studied. Results of study were as follows. 1. The matrixes of EI[B] and [K] in the equations of M(x)=EI[B]{q} and M(x) = [K]{q}+{Q} of beams are same. 2. The equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$ for the member forces have a error ratio in a finite element method of uniformly loaded structures, so equilibrium node loads {Q} must be substituted in the equation of member forces as the numerical examples of this paper revealed.

  • PDF

Developments of a Cross-Correlation Calculation Algorithm for Gas Temperature Distributions Based on TDLAS (레이저흡수분광법(TDLAS) 기반 가스온도분포 산정을 위한 상호상관계산 알고리듬 개발)

  • CHOI, DOOWON;KIM, KWANGNAM;CHO, GYONGRAE;SHIM, JOONHWAN;KIM, DONGHYUK;DEGUCHI, YOSHIHIRO;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.127-134
    • /
    • 2016
  • Most of reconstruction algorithms for the calculation of temperature distributions in CT (computed tomography)-TDLAS (tunable diode laser absorption spectroscopy) are based upon two-line thermometry method. This method gives unstable calculation convergence due to signal noise, bias error, and signal mis-matches. In this study, a new reconstruction algorithm based on cross-correlation for temperature calculation is proposed. The patterns of the optical signals at all wave lengths were used to reconstruct the temperature distribution. Numerical test has been made using phantom temperature distributions. Using these phantom temperature data, absorption spectra for all wave lengths were constructed, and these spectra were regarded as the signals that would be obtained in an actual experiments. Using these virtually generated experimental signals, temperature distribution was once again reconstructed, and was compared with those of the original phantom data. Calculation errors obtained by the newly proposed algorithm were slightly large at high temperatures with small errors at low temperature.

Analysis on Field Applicability of SWAN Nested Model (SWAN Nested model의 현장 적용성 분석)

  • Kim, Kang-Min;Dae, Nam-Ki;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • The recent trend for numerical experiment requires more higher resolution and accuracy. Generally, in the wave field calculation, it starts with a large region formulation first and follows by a separated detailed region formulation by more denser grids for the main interest area considering the geographical and bathymetrical variation. The wave fields resulted from the large region calculation is being introduced into the detail region calculation as the incident waves. In this process there exists a problem of continuity. In order to get over such problem, method of variable gridding system or spectrum sampling, etc., is being used. However, it seems not enough to examine and analyze the related numerical errors. Therefore, it is investigated in this study the field applicability of the most pervasive use of wave model, the nested SWAN model. For this purpose, we made model experiment for two coastal harbours with different tidal environment, and compared and analyzed the result. From the analysis, it was found that both the extracted values, near the boundaries of the large and detail region and the nested formulation of SWAN model, show almost the same and no different between those with different tidal environment conditions. However it is necessary for reducing the numerical errors to set the boundaries for the detailed region outside of the rapid bathymetric change and deeper region.

Comparison of Projection-Based Model Order Reduction for Frequency Responses (주파수응답에 대한 투영기반 모델차수축소법의 비교)

  • Won, Bo Reum;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.933-941
    • /
    • 2014
  • This paper provides a comparison between the Krylov subspace method (KSM) and modal truncation method (MTM), which are typical projection-based model order reduction methods. The frequency responses are compared to determine the numerical accuracies and efficiencies. In order to compare the numerical accuracies of the KSM and MTM, the frequency responses and relative errors according to the order of the reduced model and frequency of interest are studied. Subsequently, a numerical examination shows whether a reduced order can be determined automatically with the help of an error convergence indicator. As for the numerical efficiency, the computation time needed to generate the projection matrix and the solution time to perform a frequency response analysis are compared according to the reduced order. A finite element model for a car suspension is considered as an application example of the numerical comparison.

Accuracy Evaluation of Cadastral Surveying using Data of Parcel Based Land Information System (필지중심토지정보시스템 자료를 이용한 지적측량 정확도 평가)

  • Ju, Jeong-Jun;Kim, Seong-Sam;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.3 s.30
    • /
    • pp.23-31
    • /
    • 2004
  • Cadastral surveying is related to demarcating legal boundaries and areas for the sake of registering a properly on cadastral records or restoring registered boundaries on the ground. It is composed of control surveying (cadastral triangulation and supplementary control surveying) and detail surveying. Detail surveying is classified into plane table surveying by graphical cadastral map and numerical surveying by boundary point coordinates. In this study we compared the accuracy of plane table surveying with numerical surveying using Parcel Based Land Information System(PBLIS) data constructed by the cadastral map digitalization business. In conclusion the result by numerical surveying was analyzed as more accurate than the result of plane table surveying, as Root Mean Square Errors(RMSE) of graphical cadastral surveying is 0.766m and that of numerical cadastral surveying using Total Station(T/S) is 0.683m. Therefore, PBLIS data is expected to be used for surveying legal boundaries and areas in the near future.

  • PDF