• 제목/요약/키워드: nuclear fuel cycle

검색결과 1,101건 처리시간 0.028초

후행 핵연료주기의 다자 방안 분석 (Multilateral Approaches to the Back-end of the Nuclear Fuel Cycle: Challenges and Possibilities)

  • 류호진
    • 방사성폐기물학회지
    • /
    • 제8권4호
    • /
    • pp.269-277
    • /
    • 2010
  • 원자력의 중흥기를 맞이하여 민감한 핵연료주기 기술의 무분별한 확장을 억제하고자 다양한 핵연료주기 다자 방안이 제시되고 있다. 현재 원자력 공급국 위주의 핵연료주기 다자화가 추진되고 있는 실정에서 후행 핵연료주기 기술의 다자화 추진 추이를 파악하고자 사용후핵연료 공동 관리 시설에 대한 분석 결과를 검토하였다. 또한 후행 핵연료주기 연구개발 시설의 다자화를 제안하고 기대효과와 문제점을 검토한 후 이를 실현하기 위한 추진방안을 도출하였다.

DYNAMIC MODELING AND ANALYSIS OF ALTERNATIVE FUEL CYCLE SCENARIOS IN KOREA

  • Jeong, Chang-Joon;Choi, Hang-Bok
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.85-94
    • /
    • 2007
  • The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium uranium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ${\sim}65000$ tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors.

Dynamic Modeling of the Korean Nuclear Euel Cycle

  • Jeong, Chang-Joon;Park, Joo-Hwan;Park, Hangbok
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.386-395
    • /
    • 2004
  • The Korean fuel cycle scenario has been modeled by using the dynamic analysis method. For once-through fuel cycle model, the nuclear power plant construction plan was considered, and the nuclear demand growth rate from the year 2016 was assumed to be 1%. After setup the once-thorough fuel cycle model, the DUPIC and fast reactor scenarios were modeled to investigate the environmental effect of each fuel cycle. Through the calculation of the amount of spent fuel, and the amounts of plutonium and minor actinides were estimated and compared to those of the once-through fuel cycle. The results of the once-through fuel cycle shows that the demand grows to 64 GWe and the total amount of the spent fuel would be 100 kt in the year 2100, while the total spent fuel can be reduced by 50% when the DUPIC scenario is implemented

  • PDF

DEVELOPMENT OF HOT CELL FACILITIES FOR DEMONSTRATION OF ACP

  • You, Gil-Sung;Choung, Won-Myung;Ku, Jeong-Hoe;Cho, Il-Je;Kook, Dong-Hak;Park, Seong-Won
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 Proceedings of the 4th Korea-China Joint Workshop on Nuclear Waste Management
    • /
    • pp.191-204
    • /
    • 2004
  • The research and development of effective management technologies of the spent fuels discharged from power reactors are an important and essential task of KAERI. In resent several years KAERI has focused on a project named "development and demonstration of the Advanced spent fuel Conditioning Process (ACP) in a laboratory scale." The Facility for ACP demonstration consists of two Hot Cells and auxiliary facilities. It is now in the final design stage and will be constructed in 2004. After construction of the facility the ACP equipments will be installed in Hot Cells. The ACP will be demonstrated by some simulated spent fuels first and then by spent fuels.

  • PDF

Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

  • Kim, Sungki;Ko, Wonil;Nam, Hyoon;Kim, Chulmin;Chung, Yanghon;Bang, Sungsig
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1063-1070
    • /
    • 2017
  • This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.

Chemical Stability of Conductive Ceramic Anodes in LiCl-Li2O Molten Salt for Electrolytic Reduction in Pyroprocessing

  • Kim, Sung-Wook;Kang, Hyun Woo;Jeon, Min Ku;Lee, Sang-Kwon;Choi, Eun-Young;Park, Wooshin;Hong, Sun-Seok;Oh, Seung-Chul;Hur, Jin-Mok
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.997-1001
    • /
    • 2016
  • Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive $La_{0.33}Sr_{0.67}MnO_3$ in $LiCl-Li_2O$ molten salt at $650^{\circ}C$ was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the $La_{0.33}Sr_{0.67}MnO_3$ anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

Evaluation of the Middle Part of the Nuclear Fuel Cycle

  • Kovac, Michal
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.169-174
    • /
    • 2016
  • This article describes a comprehensive methodology for the evaluation of the middle part of nuclear fuel cycles. Evaluation of fuel cycles is basically divided into two parts. The first comprises nuclear calculation, i.e., creation of the strategy for nuclear fuel reloading and core design calculations. The second part is the business-economic evaluation of the selected reloading strategy, which can be done either by financial analysis or economic analysis. The financial analysis incorporates the perspectives of a company while the economic analysis can be used primarily by national economists or politicians. This methodology was applied to a case study that is focused on impacts of switching from a 12-month to an 18-month fuel cycle strategy for Water-Water Energetic Reactor (VVER)-1000 reactors.