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a b s t r a c t

This paper presents a method for forecasting future uranium prices that is used as input data to calculate
the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the
statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost
estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When
the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was
calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error
of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at
decreasing uncertainty in nuclear fuel cycle cost calculation.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the case of nuclear fuel cycle cost, the uranium cost takes up a
significant portion of approximately 26e30% [1]. Accordingly, it is
necessary to forecast the future uranium price even more accu-
rately in order to decrease the uncertainty of the nuclear fuel cycle
cost.

Uranium recorded its highest price in 2007 at approximately
140 US$/poundU (Uranium). Since then, the price has decreased
and is now at approximately 40 US$/poundU (March 2015). The
reasonwhy the price of uranium soared in 2007 is that therewas an
imbalance between uranium demand and supply. Uranium prices
can change owing to various external factors, in addition to the
above mentioned imbalance of demand and supply. For example,
since the Fukushima nuclear accident that took place in Japan, the
share of nuclear power generation as part of total electricity gen-
eration of nuclear power generating nations in the European Union
(EU), including Germany, has decreased. As such, the demand for

uranium decreased until May 2014. Moreover, uranium demand
may decrease, because nuclear power generation has decreased
owing to shale gas development and decreases in oil prices [2].
However, shale gas distribution is currently vast, and significant
cost is expected to be incurred in developing the infrastructure
required for gas development [3,4]. Thus, shale has yet to signifi-
cantly affect the share of nuclear power generation. Moreover, it is
expected that uranium prices will not decrease in the long-term
because oil price decreases are limited over time as well.

Germany, the representative nation in the EU in terms of
decreased nuclear power generation, has increased its share of
electricity generated from new and renewable sources. As such, its
generation costs have increased significantly. Accordingly, elec-
tricity consumers in Germany are experiencing significant difficulty
owing to the increase in electricity prices. In the end, advanced EU
nations that are lowering their share of nuclear power generation
have yet to find an alternative energy source that can effectively
replace nuclear power generation. For example, neither solar heat
nor wind power can produce a sufficient amount of electricity to
replace nuclear power. Moreover, new and renewable energy
sources cannot produce electricity stably during weather changes.
Thus, they are considered unfit as a power supply base.
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One of the key reasons why uranium prices have increased is
that rising nations such as China are continuing to construct many
nuclear power plants in order to cope actively with climate change,
and to sufficiently supply the electricity needed for their economic
advancement. China plans to construct approximately 100 nuclear
power plants on its eastern coast. Accordingly, the construction of
China's nuclear power field is expected to significantly affect future
uranium prices around the world, and will increase uranium prices.

If it is possible to forecast uranium prices relatively accurately, it
will be possible to identify the right time for purchasing needed
uranium at a low price, and to secure a necessary uranium in-
ventory. Moreover, this study will contribute significantly to an
assessment of the economics of the nuclear fuel cycle because it
will be possible to increase the accuracy of uranium cost prediction,
which is a key cost driver for nuclear fuel cycle costs [5,6].
Accordingly, this paper utilizes a time-series analysis method,
which is a statistical method that uses past data to forecast future
uranium prices. In other words, future uranium prices are fore-
casted by utilizing the autoregressive integrated moving average
(ARIMA) model according to the procedure shown in Fig. 1.

2. Uranium price forecasting model

A nuclear fuel cycle economic analysis that uses a dynamic
model involves an engineering cost calculation method. In other
words, the uranium price at each year in the future is calculated by
factoring in the escalation rate with the uranium price of the base
point. This uranium price is used as the input data for the nuclear
fuel cycle cost calculation. Accordingly, the nuclear fuel cycle cost's
uncertainty decreases when the future uranium price is accurate
[7]. However, a significant price trend difference was found be-
tween the actual uranium price and uranium price values that were
forecasted using the escalation rate model, as shown in Fig. 2.
Accordingly, the value for calculating the sum of the uranium cost
for each year according to the current value is bound to yield a
significant difference.

Thus, in order to decrease the nuclear fuel cycle cost, calculation
of the uranium price per year in the future needs to use a scientific
estimation method that can come up with a figure that is close to
the actual price, without uncertainty, because the uranium cost is a
key cost driver of the nuclear fuel cycle cost [8]. For this reason,

after identifying the various time series analysis models that can
rationally forecast the uranium price for each year in the future
with very high uncertainty, this paper presents the most suitable
model. First, an escalation rate model and the theoretical concept of
the statistical model, which are being used in the existing engi-
neering cost estimation method, were examined.

2.1. Consumer price escalation rate model: Uranium price
forecasting model that factors in the consumer price escalation rate

In the case of the nuclear fuel cycle cost calculation field, which
has used a dynamic model until now, the uranium price for a
certain standard year was set as shown in Eq. (1) [9], and only the
consumer price escalation rate was factored into this value to
forecast the future uranium price. These data are used as the input
data for the nuclear fuel cycle cost calculation. Because this
research paper considers only the consumer price escalation rate,
the model was called the “escalation rate model.” When the stan-
dard year's uranium price is calculated according to the uranium
price of the previous year using the consumer price escalation rate
model, the uranium price increases in a linear manner [10]. When
the uranium price for a year is calculated according to the standard
year's uranium price, the uranium price increases as time moves
forward. Accordingly, because the uranium price that is forecast
with the consumer price escalation rate model continues to in-
crease, a disadvantage is that a significant difference from the
actual future uranium price may result. However, the escalation
rate model is often used today because of its advantage that the
rough future uranium price can be estimated promptly [11].

UPt ¼ UPbð1þ eÞðt�bÞ (1)

where UPt ¼ uranium price at year t, UPb ¼ uranium price at base
year, e ¼ escalation rate, and b ¼ base year.

2.2. Time-series analysis model

The ARIMAmodel is one of the time-series analysis models; it is
used as a statistical forecasting method, and is also referred to as
the Box-Jenkins model [12e15]. By performing model identifica-
tion, discerned model parameter estimation, and testing statistical

Fig. 1. The procedure of forecasting uranium price using the autoregressive integrated moving average (ARIMA) model.
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significance, this model can forecast the future uranium price [16].
When the time-series data are stationary, the Box-Jenkins model
can be classified into the categories of autoregressive model,
moving average model, or autoregressive moving average (ARMA)
model, as follows.

2.2.1. Autoregressive model
An autoregressive model is a statistical model in which the

current values are affected by values such as Year t-1 and Year t-2 of
the past. This appears as in Eq. (2) [13e15].

Yt ¼ mþ a1Yt�1 þ a2Yt�2 þ…::þ apYt�p þ εt (2)

where m ¼ y-intercept, a ¼ coefficient, Yt�1 ¼ random variable at
time t�1, and εt ¼ error at time t.

Accordingly, the pth-order autoregressive model is marked as AR
(p). In other words, it is marked as AR (1) and expressed as shown in
Eq. (3) when the value of the previous period exerts an important
effect on the current value [13e15,17].

ARð1Þ: Yt ¼ mþ a1Yt�1 þ εt ; εt 	 N
�
0;s2

�
(3)

where N ¼ normal distribution and s ¼ deviation.

2.2.2. Moving average model
Time-series data are affected by the continuous error term, and

can be shown through Eq. (4) [13e15,18]:

Yt ¼ m� b1εt�1 �…� bqεt�q þ εt (4)

where b ¼ coefficient.
Thus, the qth-order moving average model is denoted as MA (q).

Accordingly, the moving averagemodel that includes only the error
term of (t�1), which is the term defined in the previous paragraph,
is as shown in Eq. (5).

MAð1Þ : Yt ¼ m� b1εt�1 þ εt (5)

2.2.3. ARMA model
This is the model inwhich AR andMA are mixed together, and is

the model that is affected by all the past values and past margins of
the error values. This is as shown in Eq. (6) [13e15]:

Yt ¼ m� a1Yt�1 þ a2Yt�2 þ…::þ apYt�p þ εt � b1εt�1

�…::� bqεt�q
(6)

Thus, Eq. (5) is described as ARMA (p, q) and AR (1, 1) which is
shown in Eq. (7). AR (1) can be expressed as AR (1, 0).

Yt ¼ mþ a1Yt�1 þ εt � b1εt�1 (7)

2.2.4. ARIMA model
When time-series data are nonstationary, the ARIMA model

turns into a stationary time-series one through the method of
difference; this enables the administering of a statistical analysis.
When different time-series are shown as DZt, as shown in Eq. (8),
the ARIMA model can be expressed as Eq. (9) [13e15,19,20]:

DZt ¼ Zt � Zt�1 (8)

DdZt ¼
�
mþ a1D

dZt�1 þ a2D
dZt�2 þ…þ apD

dZt�p

�
þ εt

� b1εt�1 �…� bqεt�q (9)

where Dd ¼ a difference operator and Zt ¼ the random variable z at
time t.

Accordingly, in the case of ARIMA (p, d, q), p signifies the order
of the AR, d signifies the order of the difference, and q signifies the
order of the MA.

3. Time-series analysis model verification

3.1. Data conformity

To forecast future uranium prices, it is first and foremost
necessary to verify the conformity of the time-series analysis
model. In other words, it is necessary to calculate the autocorre-
lation coefficient, the significance of the alpha coefficient value, and
the model's conformity level [13e15]. The autocorrelation coeffi-
cient of the time-series data for the uranium price data was
analyzed. The partial autocorrelation function significantly affects
the value prior to Stage 1, as shown in Fig. 3. Accordingly, uranium
price fluctuation was analyzed with the time-series data that are
most affected by the value prior to Stage 1.
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Fig. 2. The comparison between the actual uranium price and the forecasting uranium price with escalation rate method.
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Fig. 4 shows the uranium price time-series data in graph form.
Abnormal time-series patterns are manifested before and after
2007. Thus, the data were converted into normal time-series data,
as shown in Fig. 5, by determining the difference. In other words,
this study determined the difference to convert the uranium price
data that manifested abnormal time-series form into data with a
normal time-series form, and used the data as input data for the
statistical model.

3.2. Uranium price forecasting margin of error for the time-series
analysis model

When the time-series analysis models' uranium forecasting
price and the actual price are compared, it is possible to determine
which model forecasts the future uranium price more accurately.
Table 1 shows the results of forecasting the 2015 uranium price by
entering the uranium price information from 2000 to 2014 in the
case of the drawn out time-series analysis model.

This paper used each drawn-out model to identify the uranium
price forecasting accuracy for the case of the time-series analysis

model, and defined the differences between the forecasted ura-
nium price and the actual price. This was then calculated as shown
in Eq. (10) [21].

FEt ¼ ðFPt � OPtÞ
OPt

� 100 (10)

where FEt ¼ the forecasting margin of error of the uranium price at
year t, FPt ¼ the forecasting price at year t, and OPt ¼ the actual
price at year t.

Table 2 suggests the forecasting margin of error for each time-
series analysis model's uranium price when using Eq. (1). For
example, when the forecasting price for the fourth quarter of 2015
is compared with the actual price, the model with the best fore-
casting ability was Model Number 5, followed by Model Number
1; the third best was Model Number 7, and the fourth was Model
Number 10. Up until Model Number 3, which has the fifth best
forecasting ability, the margin of error between the predicted
price and the actual price showed the models' good forecasting
ability, which was within a 10% margin of error. In the case of

Fig. 3. Partial autocorrelation function. ACF, autocorrelation function.

Fig. 4. The uranium price (unit: US$/pound).
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Model Number 5, with the best forecasting ability, the margin of
error was not statistically significant. Model Number 1 was not a
perfect ARIMA model, and Model Number 7 was also not statis-
tically significant. Model Number 10, however, was statistically
significant, in addition to manifesting a good forecasting capa-
bility, and was manifested as a perfect ARIMA model. Accordingly,
Model Number 10 was analyzed and found to be the most rational

model in terms of uranium price forecasting accuracy level and
model conformity level. However, the developed ARIMA model
cannot forecast price fluctuations that take place owing to un-
foreseeable incidents such as those that took place in Fukushima,
Japan, as shown in Fig. 6. In other words, it is limited in the sense
that it cannot factor in external variables that may occur in the
future.

Fig. 5. The uranium price after difference.

Table 1
The forecasting results of uranium prices in 2015 (unit: US$/pound).

Actual price Forecasted price

Model 1 (1,0,0) Model 2 (1,1,0) Model 3 (0,0,1) Model 4 (0,1,1) Model 5 (1,0,1)

2015 1Q 39.41 36.89 37.28 36.32 37.30 36.63
2015 2Q 36.14 36.65 37.80 37.69 37.76 36.41
2015 3Q 36.90 36.43 38.26 37.69 38.23 36.20
2015 4Q 35.10 36.24 38.74 37.69 38.70 36.01

Actual price Forecasted price

Model 6 (1,1,1) Model 7 (1,1,1) Model 8 (2,1,1) Model 9 (2,1,2) Model 10 (2,1,2)

2015 1Q 39.41 37.53 37.01 37.82 37.55 37.07
2015 2Q 36.14 38.04 37.06 38.65 39.85 38.92
2015 3Q 36.90 38.50 37.04 39.17 39.02 37.57
2015 4Q 35.10 38.98 37.05 39.7 39.20 37.26

Table 2
The forecasting's margin of error for uranium prices with each time series model (unit: US$/pound, %).

Actual price The margin of error (%)

Model 1 (1,0,0) Model 2 (1,1,0) Model 3 (0,0,1) Model 4 (0,1,1) Model 5 (1,0,1)

2015 1Q 39.41 6.39 e5.40 e7.84 e5.35 e7.05
2015 2Q 36.14 e1.41 4.59 4.29 4.48 0.75
2015 3Q 36.90 1.27 3.69 2.14 3.60 e1.90
2015 4Q 35.10 e3.25 10.37 7.38 10.26 2.59

Actual price The margin of error (%)

Model 6 (1,1,1) Model 7 (1,1,1) Model 8 (2,1,1) Model 9 (2,1,2) Model 10 (2,1,2)

2015 1Q 39.41 e4.77 e6.09 e4.03 e4.72 e5.94
2015 2Q 36.14 5.26 2.55 6.95 10.27 7.69
2015 3Q 36.90 4.34 0.38 6.15 5.75 1.82
2015 4Q 35.10 11.05 5.56 13.11 11.68 6.15
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3.3. Model conformity

This research paper used 10 models to forecast the future ura-
nium price and verified the models' conformity levels. Moreover,
the model was drawn out by utilizing all possible combinations of
AR (1, 2), I (1), and MA (1, 2), and the uranium price forecasting
value was analyzed afterwards. Table 3 shows the descriptive sta-
tistics quantities of the 10 statistical time-series analysis models.
For each model to have reliability, not only must the t-value sig-
nificance be 0.05 or less, but the significance of the value of Ljung-
Box Q, which signifies the model's conformity level, should be
larger than 0.05. Although Model Number 1 satisfied all conditions,
that model is the AR (1) model, which is presumed to lack a

forecasting capability because it is a simple model. Model Number
3 satisfies the significance of the coefficient, but the Ljung-Box Q
value is lower than 0.05. Moreover, Model Number 7 excludes the
constant term that is not significant in Model Number 6. Model
Number 10 excludes the constant term of Model Number, which is
not significant. When each model's significance value is examined,
only two models, Model Number 10 and Model Number 1, were
found to satisfy the model conformity. In other words, the signifi-
cance level of all coefficients of Model Number 10 and Model
Number 1 is lower than 0.05, whereas the Ljung-Box Q values are
greater than 0.05. Accordingly, Model Number 10 was proven to be
the best in terms of this model conformity level. Thus, all models
excluding Model Number 10 and Model Number 1 were rejected as
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Fig. 6. The uranium price trend after Fukushima accident (March 11, 2011).

Table 3
Statistics of the derived 10 time series models.

Model type Model parameters LjungeBox Q Goodness of fit

Model Type Coefficients t-value (Sig.) Statistics DF Sig.

1 ARIMA (1,0,0) Constant 34.325 2.876 (0.006) 8.333 17 0.959 Accepted
AR Lag 1 0.903 17.614 (0.000)

2 ARIMA (1,1,0) Constant 0.416 0.350 (0.728) 10.258 17 0.892 Rejected
AR Lag 1 e0.137 e1.083 (0.283)

3 ARIMA (0,0,1) Constant 37.618 10.491 (0.000) 119.973 17 0.000 Rejected
MA Lag 1 e0.070 e7.574 (0.000)

4 ARIMA (0,1,1) Constant 0.416 0.344 (0.732) 10.317 17 0.890 Rejected
MA Lag 1 0.109 0.859 (0.394)

5 ARIMA (1,0,1) Constant 33.862 2.675 (0.010) 7.982 16 0.949 Rejected
AR Lag 1 0.916 17.383 (0.000)
MA Lag 1 0.075 0.530 (0.598)

6 ARIMA (1,1,1) Constant 0.416 0.340 (0.735) 10.174 16 0.857 Rejected
AR Lag 1 e0.394 e0.525 (0.602)
MA Lag 1 e0.252 e0.319 (0.751)

7 ARIMA (1,1,1) AR Lag 1 e0.397 e0.527 (0.600) 10.165 16 0.858 Rejected
MA Lag 1 e0.256 e0.323 (0.748)

8 ARIMA (2,1,1) Constant 0.406 0.294 (0.770) 9.677 15 0.840 Rejected
AR Lag 1 0.023 0.021 (0.983)
AR Lag 2 0.134 0.732 (0.467)
MA Lag 1 0.147 0.133 (0.895)

9 ARIMA (2,1,2) Constant 0.428 0.330 (0.743) 6.141 14 0.963 Rejected
AR Lag 1 e0.766 e3.027 (0.004)
AR Lag 2 e0.735 e3.341 (0.001)
MA Lag 1 e0.626 e2.749 (0.008)
MA Lag 2 e0.801 e4.374 (0.000)

10 ARIMA (2,1,2) AR Lag 1 e0.764 e3.040 (0.004) 6.126 14 0.963 Accepted
AR Lag 2 e0.735 e3.358 (0.001)
MA Lag 1 e0.624 e2.768 (0.008)
MA Lag 2 e0.802 e4.412 (0.000)

ARIMA, autoregressive integrated moving average; DF, degree of freedom; Sig., significance probability.
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unfit from a statistical reliability perspective.
The residual was additionally verified to check whether the

time-series data of Model Number 10 are statically suitable. Fig. 7
shows the autocorrelation for the residual of Model Number 10
and the partial autocorrelation value. Residual autocorrelation
function and partial autocorrelation function are stationary within
a confidence interval of 95%.

3.4. Forecasting uranium price results

This study used SPSS version 18.0 software (IBM Corporation,
Armonk, New York, USA) to perform the time-series analysis. Ten
modelsweredrawnout bycombining the p, d, andq values based on
the data on the past uraniumprice, and a statisticalmodelwasmade
for forecasting the future uranium price. However, when the

Fig. 8. The forecasting result of uranium price with Model 10 (unit: US$/pound) - autoregressive integrated moving average (ARIMA) (2,1,2) until 2018. LCL, lower confidence limit;
UCL, upper confidence limit.

Table 4
The forecasting uranium price with model 1and model 10 (unit: US$/pound).

Time Model 1 (1,0,0) Model 10 (2,1,2)

2016 1Q 35.02 36.45
2016 2Q 34.96 36.37
2016 3Q 34.90 35.44
2016 4Q 34.84 36.21
2017 1Q 34.79 36.31
2017 2Q 34.74 35.67
2017 3Q 34.70 36.09
2017 4Q 34.67 36.24
2018 1Q 34.63 35.81
2018 2Q 34.60 36.03
2018 3Q 34.58 36.17
2018 4Q 34.55 35.91

Fig. 7. Residual autocorrelation function (ACF) and residual partial ACF (PACF) in Model 10.
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model's conformity level was calculated by assuming a confidence
interval of 95% for each model, models excluding Model Number 1
and Model Number 10 were rejected. Fig. 8 shows graphs of the
uranium forecasting price trend of Model Number 10. Moreover,
Table 4 shows the results of forecasting the uraniumprice from2016
to 2018 obtained by entering the price information from 2000 to
2015.

4. Conclusion

ARIMA Model Number 10 was used to forecast future uranium
prices, and showed a forecasting margin of error of approximately
5.4% compared to the uranium's actual price in 2015. Accordingly, it
was proven that the value of the future uranium price estimated
using theARIMAmodel, which is a statisticalmethod, is closer to the
actual price than is any value obtained by forecasting of the uranium
price merely by factoring in the consumer price escalation rate.

When the ARIMAmodel was used to forecast the uranium price,
it was proven that the uranium price forecast is statistically reliable
with a confidence interval of 95%. However, because the ARIMA
model's uranium forecasting value relies completely on past ura-
nium price data, this model is limited in the sense that it cannot
factor in the effect of external variables that may come into play in
the future. Despite this limitation, however, the future uranium
price forecasted by the ARIMA model comes closer to the actual
uranium price than does the value obtained using the escalation
rate model, which merely factors in the consumer price escalation
rate. Thus, this model is likely to contribute significantly to a
reduction of uncertainty regarding nuclear fuel cycle costs.
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