• Title/Summary/Keyword: normalized occurrence number

Search Result 7, Processing Time 0.019 seconds

New accuracy indicator to quantify the true and false modes for eigensystem realization algorithm

  • Wang, Shuqing;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.625-634
    • /
    • 2010
  • The objective of this paper is to apply a new proposed accuracy indicator to quantify the true and false modes for Eigensystem Realization Algorithm using output-based responses. First, a discrete mass-spring system and a simply supported continuous beam were modelled using finite element method. Then responses are simulated under random excitation. Natural Excitation Technique using only response measurements is applied to compute the impulse responses. Eigensystem Realization Algorithm is employed to identify the modal parameters on the simulated responses. A new accuracy indicator, Normalized Occurrence Number-NON, is developed to quantitatively partition the realized modes into true and false modes so that the false portions can be disregarded. Numerical simulation demonstrates that the new accuracy indicator can determine the true system modes accurately.

Adaptive Multi-Tap Equalization for Removing ICI Caused by Transmitter Power Transient in LTE Uplink System (LTE 상향 링크 시스템에서 송신기의 전력 과도 현상에 의해 발생하는 ICI를 제거하기 위한 적응적 멀티 탭 등화 기법)

  • Chae, Hyuk-Jin;Cho, Il-Nam;Kim, Dong-Ku
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.701-713
    • /
    • 2009
  • This paper studies a method for reducing performance degradation due to losing sub-carrier orthogonality caused by power transient between physical channels in LTE uplink transmission. The pattern of inter-carrier interference(ICI) caused by power transient is different from what has been studied for doppler shift, in that its pattern occurs at front and rear sides of channels in each period of power transient. The reason of ICI's occurrence results from power difference between channels, power transient duration, multi-path channel delay spread, and numbers of sub-carrier. New criterion is proposed to find out number of taps of multi-tap equalizer enough to improve the ICI. The scheme is to determine the number of taps of multi-tap equalizer when a normalized interference or a normalized ICI is greater than a normalized noise. Simulation results show that the number of taps is flexibly adjusted according to SNR(Signal to Noise Ratio) of a received signal to improve Bit Error Rate(BER), while the complexity of the proposed scheme is reduced down to 88 percentage of the classical method.

Whole genome sequencing based noninvasive prenatal test

  • Cho, Eun-Hae
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.61-65
    • /
    • 2015
  • Whole genome sequencing (WGS)-based noninvasive prenatal test (NIPT) is the first method applied in the clinical setting out of various NIPT techniques. Several companies, such as Sequenom, BGI, and Illumina offer WGS-based NIPT, each with different technical and bioinformatic approaches. Sequenom, BGI, and Illumina utilize z-, t-, and L-scores, as well as normalized chromosome values, respectively, for trisomy detection. Their outstanding performance has been demonstrated in clinical studies of more than 100,000 pregnancies. The sensitivity and specificity for detection of trisomies 13, 18, and 21 were above 98%, as reported by all three companies. Unlike other techniques, WGS-based NIPT can detect other trisomies as well as clinically significant segmental duplications/deletions within a chromosome, which could expand the scope of NIPT. Incorrect results could be due to low fetal fraction, fetoplacental mosaicism, confined placental mosaicism or maternal copy number variation (CNV). Among those, maternal CNV is a significant contributor of false positive results and therefore genome wide scanning plays an important role in preventing the occurrence of false positives. In this article, the bioinformatic techniques and clinical performance of three major companies are comprehensively reviewed.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.

A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea (PNU CGCM-WRF Chain을 이용한 남한지역 벼의 생육단계별 고온해 및 저온해 발생일수에 대한 예측성 연구)

  • Kim, Young-Hyun;Choi, Myeong-Ju;Shim, Kyo-Moon;Hur, Jina;Jo, Sera;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.577-592
    • /
    • 2021
  • This study evaluates the predictability of the number of days of heat and cold damages by growth stages of rice in South Korea using the hindcast data (1986~2020) produced by Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF) model chain. The predictability is accessed in terms of Root Mean Square Error (RMSE), Normalized Standardized Deviations (NSD), Hit Rate (HR) and Heidke Skill Score (HSS). For the purpose, the model predictability to produce the daily maximum and minimum temperatures, which are the variables used to define heat and cold damages for rice, are evaluated first. The result shows that most of the predictions starting the initial conditions from January to May (01RUN to 05RUN) have reasonable predictability, although it varies to some extent depending on the month at which integration starts. In particular, the ensemble average of 01RUN to 05RUN with equal weighting (ENS) has more reasonable predictability (RMSE is in the range of 1.2~2.6℃ and NSD is about 1.0) than individual RUNs. Accordingly, the regional patterns and characteristics of the predicted damages for rice due to excessive high- and low-temperatures are well captured by the model chain when compared with observation, particularly in regions where the damages occur frequently, in spite that hindcasted data somewhat overestimate the damages in terms of number of occurrence days. In ENS, the HR and HSS for heat (cold) damages in rice is in the ranges of 0.44~0.84 and 0.05~0.13 (0.58~0.81 and -0.01~0.10) by growth stage. Overall, it is concluded that the PNU CGCM-WRF chain of 01RUN~05RUN and ENS has reasonable capability to predict the heat and cold damages for rice in South Korea.

Estimation of the Lodging Area in Rice Using Deep Learning (딥러닝을 이용한 벼 도복 면적 추정)

  • Ban, Ho-Young;Baek, Jae-Kyeong;Sang, Wan-Gyu;Kim, Jun-Hwan;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.105-111
    • /
    • 2021
  • Rice lodging is an annual occurrence caused by typhoons accompanied by strong winds and strong rainfall, resulting in damage relating to pre-harvest sprouting during the ripening period. Thus, rapid estimations of the area of lodged rice are necessary to enable timely responses to damage. To this end, we obtained images related to rice lodging using a drone in Gimje, Buan, and Gunsan, which were converted to 128 × 128 pixels images. A convolutional neural network (CNN) model, a deep learning model based on these images, was used to predict rice lodging, which was classified into two types (lodging and non-lodging), and the images were divided in a 8:2 ratio into a training set and a validation set. The CNN model was layered and trained using three optimizers (Adam, Rmsprop, and SGD). The area of rice lodging was evaluated for the three fields using the obtained data, with the exception of the training set and validation set. The images were combined to give composites images of the entire fields using Metashape, and these images were divided into 128 × 128 pixels. Lodging in the divided images was predicted using the trained CNN model, and the extent of lodging was calculated by multiplying the ratio of the total number of field images by the number of lodging images by the area of the entire field. The results for the training and validation sets showed that accuracy increased with a progression in learning and eventually reached a level greater than 0.919. The results obtained for each of the three fields showed high accuracy with respect to all optimizers, among which, Adam showed the highest accuracy (normalized root mean square error: 2.73%). On the basis of the findings of this study, it is anticipated that the area of lodged rice can be rapidly predicted using deep learning.

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.