DOI QR코드

DOI QR Code

A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea

PNU CGCM-WRF Chain을 이용한 남한지역 벼의 생육단계별 고온해 및 저온해 발생일수에 대한 예측성 연구

  • Kim, Young-Hyun (Department of Atmospheric Sciences, Pusan National University) ;
  • Choi, Myeong-Ju (Department of Atmospheric Sciences, Pusan National University) ;
  • Shim, Kyo-Moon (National Institute of Agricultural Sciences, RDA) ;
  • Hur, Jina (National Institute of Agricultural Sciences, RDA) ;
  • Jo, Sera (National Institute of Agricultural Sciences, RDA) ;
  • Ahn, Joong-Bae (Department of Atmospheric Sciences, Pusan National University)
  • Received : 2021.08.22
  • Accepted : 2021.10.28
  • Published : 2021.12.31

Abstract

This study evaluates the predictability of the number of days of heat and cold damages by growth stages of rice in South Korea using the hindcast data (1986~2020) produced by Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF) model chain. The predictability is accessed in terms of Root Mean Square Error (RMSE), Normalized Standardized Deviations (NSD), Hit Rate (HR) and Heidke Skill Score (HSS). For the purpose, the model predictability to produce the daily maximum and minimum temperatures, which are the variables used to define heat and cold damages for rice, are evaluated first. The result shows that most of the predictions starting the initial conditions from January to May (01RUN to 05RUN) have reasonable predictability, although it varies to some extent depending on the month at which integration starts. In particular, the ensemble average of 01RUN to 05RUN with equal weighting (ENS) has more reasonable predictability (RMSE is in the range of 1.2~2.6℃ and NSD is about 1.0) than individual RUNs. Accordingly, the regional patterns and characteristics of the predicted damages for rice due to excessive high- and low-temperatures are well captured by the model chain when compared with observation, particularly in regions where the damages occur frequently, in spite that hindcasted data somewhat overestimate the damages in terms of number of occurrence days. In ENS, the HR and HSS for heat (cold) damages in rice is in the ranges of 0.44~0.84 and 0.05~0.13 (0.58~0.81 and -0.01~0.10) by growth stage. Overall, it is concluded that the PNU CGCM-WRF chain of 01RUN~05RUN and ENS has reasonable capability to predict the heat and cold damages for rice in South Korea.

Keywords

Acknowledgement

본 성과물은 농촌진흥청 연구사업(세부과제번호: PJ01489102)의 지원에 의해 이루어진 것임.

References

  1. Ahn, J.-B., and J.-A. Lee, 2001: Numerical study on the role of sea-ice using ocean general circulation model. J. Korean Soc. Oceanogr., 6, 225-233 (in Korean with English abstract).
  2. Ahn, J.-B., and J. Lee, 2015: Comparative study on the seasonal predictability dependency of boreal winter 2m temperature and sea surface temperature on CGCM initial conditions. Atmosphere, 25, 353-366, doi:10.14191/Atmos.2015.25.2.353 (in Korean with English abstract).
  3. Ahn, J.-B., S.-B. Lee, and S.-B. Ryoo, 2012: Development of 12-month ensemble prediction system using PNU CGCM V1.1. Atmosphere, 22, 455-464, doi:10.14191/Atmos.2012.22.4.455 (in Korean with English abstract).
  4. Ahn, J.-B., and Coauthors, 2016: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pac. J. Atmos. Sci., 52, 223-236, doi:10.1007/s13143-016-0021-0.
  5. Ahn, J.-B., J. Lee, and S. Jo, 2018a: Evaluation of PNU CGCM ensemble forecast system for boreal winter temperature over South Korea. Atmosphere, 28, 509-520, doi:10.14191/Atmos.2018.28.4.509 (in Korean with English abstract).
  6. Ahn, J.-B., K.-M. Shim, M.-P. Jung, H.-G. Jeong, Y.-H. Kim, and E.-S. Kim, 2018b: Predictability of temperature over S outh K orea in PNU CGCM and WRF h indcast. Atmosphere, 28, 479-490, doi: 10.14191/Atmos.2018.28.4.479 (in Korean with English abstract).
  7. Ahn, J.-B., and Coauthors, 2021: Climatic yield potential of Japonica-type rice in the Korean Peninsula under RCP scenarios using the ensemble of multi-GCM and multi-RCM chains. Int. J. Climatol., 41, E1287-E1302, doi:10.1002/joc.6767.
  8. Bonan, G. B., 1998: The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J. Climate, 11, 1307-1326. https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2
  9. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
  10. Chung, S.-O., 2010: Simulating evapotranspiration and yield responses of rice to climate change using FAOAquaCrop. J. Korean Soc. Agric. Eng., 52, 57-64, doi:10.5389/KSAE.2010.52.3.057 (in Korean with English abstract).
  11. Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
  12. FAO, IFAD, UNICEF, WFP, and WHO, 2021: The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Food and Agriculture Organization of the United Nations, 240 pp, doi:10.4060/cb4474en.
  13. Heo, I. H., 2006: The distribution of regional unusual temperature Korea. J. Korean Assoc. Reg. Geogr., 12, 461-474 (in Korean with English abstract).
  14. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
  15. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.
  16. Hunke, E. C., and J. K. Dukowicz, 1997: An Elastic-Viscous-Plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849-1867, doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.
  17. Jeong, H.-K., C.-G. Kim, and D.-H. Moon, 2013: Impacts of abnormal weather factors on rice production. J. Climate Change Res., 4, 317-330 (in Korean with English abstract).
  18. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
  19. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Rep., NCAR/TN-420+STR, 152 pp, doi:10.5065/D6FF3Q99.
  20. Kim, C.-K., H.-K. Jeong, S.-H. Han, J.-S. Kim, and D.-H. Moon, 2013: Impacts and countermeasures of climate change on food supply in Korea. Korea Rural Economic Institute, 176 pp [Available online at https://repository.krei.re.kr/handle/2018.oak/21015].
  21. Kim, D.-J., and J.-H. Kim, 2018: An outlook of changes in the flowering dates and low temperature after flowering under the RCP8.5 projected climate condition. Korean J. Agric. Forest Meteorol., 20, 313-320, doi:10.5532/KJAFM.2018.20.4.313 (in Korean with English abstract).
  22. Kim, G.-H, 2020: Development of an agrophotovoltaic system and analysis of the agronomic characteristic of crops under agrophotovoltaic system. Bull. Korea Photovoltaic Soc., 6, 15-24 (in Korean).
  23. Kim, M.-R, 2011: The Status of Korea's rice industry and the rice processing industry. Food Indust. Nutr., 16, 22-26 (in Korean).
  24. Kim, S., I. Heo, and S. Lee, 2010: Impacts of temperature rising on changing of cultivation area of apple in Korea. J. Korean Assoc. Reg. Geograph., 16, 201-215 (in Korean with English abstract).
  25. Kim, Y.-H., E.-S. Kim, M.-J. Choi, K.-M. Shim, and J.-B. Ahn, 2019: Evaluation of long-term seasonal predictability of heatwave over South Korea using PNU CGCM-WRF chain. Atmosphere, 29, 671-687, doi:10.14191/Atmos.2019.29.5.671 (in Korean with English abstract).
  26. Lee, D., and Coauthors, 2017: Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study. Climate Dyn., 49, 4121-4139, doi:10.1007/s00382-017-3566-4.
  27. Lee, M.-H., N.-K. Park, and S.-H. Park, 1989: Mechanisms of cold injury and cultural practices for reducing damage of rice. Korean J. Crop Sci., 34, 34-44 (in Korean with English abstract).
  28. Lee, I., M.-J. Seo, M. R. Park, N.-G. Kim, G. Yi, Y.-Y. Lee, M. Kim, B. W. Lee, and H.-T. Yun, 2020: Yield and seed quality changes according to delayed harvest with rainfall treatment in soybean (Glycine max L.). Korean J. Crop Sci., 65, 353-364 (in Korean with English abstract). https://doi.org/10.7740/KJCS.2020.65.4.353
  29. Lee, S.-H., I.-H. Heo, K.-M. Lee, S.-Y. Kim, Y.-S. Lee, and W.-T. Kwon, 2008: Impacts of climate change on phonology and growth of crops: In the case of Naju. J. Korean Geograph. Soc., 43, 20-35 (in Korean with English abstract).
  30. Lesk, C., P. Rowhani, and N. Ramankutty, 2016: Influence of extreme weather disasters on global crop production. Nature, 529, 84-87, doi:10.1038/nature16467.
  31. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237.
  32. Myeong, S., 2018: Impact of climate change related natural disasters on rice production in South Korea. J. Korean Soc. Hazard Mitig. 18, 53-60, doi:10.9798/KOSHAM.2018.18.7.53 (in Korean with English abstract).
  33. Pacanowski, R. C., and S. M. Griffies, cited 1998: MOM 3.0 manual. NOAA/GFDL [Available online at http://www.gfdl.noaa.gov/ocean-model].
  34. Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dyn., 46, 2469-2486, doi:10.1007/s00382-015-2713-z.
  35. Park, C., D.-H. Cha, G. Kim, G. Lee, D.-K. Lee, M.-S. Suh, S.-Y. Hong, J.-B. Ahn, and S.-K. Min, 2020: Evaluation of summer precipitation over Far East Asia and South Korea simulated by multiple regional climate models. Int. J. Climatol., 40, 2270-2284, doi:10.1002/joc.6331.
  36. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. Climatol., 9, 857-861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.
  37. RDA, 2018: Development of production prospects and risk assessment evaluation technology for decreasing climate disaster on upland crops. National Institute of Crop Science, Rural Development Administration, 159 pp, doi:10.23000/TRKO201800043543 (in Korean).
  38. Shim, K.-M., Y.-S. Kim, M.-P. Jung, I.-T. Choi, and S.-H. Min, 2014: Agro-climatic zonal characteristics of the frequency of abnormal duration of sunshine in South Korea. Korean J. Agric. Forest Meteorol., 16, 83-91, doi:10.5532/KJAFM.2014.16.1.83 (in Korean with English abstract).
  39. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Rep., NCAR/TN475+STR, 113 pp, doi:10.5065/D68S4MVH.
  40. Son, I.-C., K. H. Moon, E. Y. Song, S. Oh, H. Seo, and J. Yang, 2015: Effects of differentiated temperature based on growing season temperature on growth and physiological response in Chinese cabbage 'Chunkwang'. Korean J. Agric. Forest Meteorol., 17, 254-260, doi:10.5532/KJAFM.2015.17.3.254 (in Korean with English abstract).
  41. Sun, J., and J. B. Ahn, 2011: A GCM-based forecasting model for the landfall of tropical cyclones in China. Adv. Atmos. Sci., 28, 1049-1055, doi:10.1007/s00376-011-0122-8.
  42. Sun, J., and J. B. Ahn, 2015: Dynamical seasonal predictability of the Arctic Oscillation using a CGCM. Int. J. Climatol., 35, 1342-1353, doi:10.1002/joc.4060.
  43. Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456, 12-29. https://doi.org/10.1016/j.jhydrol.2012.05.052
  44. UN, 2019: World Population Prospects 2019. Highlights. United Nations, Department of Economic and Social Affairs, Population Division, ST/ESA/SER.A/423, 39pp.
  45. Yun, J. I., 1999: Agricultural meteorology. Arche Inc., 337pp.
  46. Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.