DOI QR코드

DOI QR Code

Assessment on the East Asian Summer Monsoon Simulation by Improved Global Coupled (GC) Model

Global Coupled (GC) 모델 개선에 따른 동아시아 여름 몬순 모의성능 평가

  • Kim, Ji-Yeong (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Hyun, Yu-Kyung (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lee, Johan (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Shin, Beom-Cheol (Operational Systems Development Department, National Institute of Meteorological Sciences)
  • 김지영 (국립기상과학원 현업운영개발부) ;
  • 현유경 (국립기상과학원 현업운영개발부) ;
  • 이조한 (국립기상과학원 현업운영개발부) ;
  • 신범철 (국립기상과학원 현업운영개발부)
  • Received : 2021.08.20
  • Accepted : 2021.10.27
  • Published : 2021.12.31

Abstract

The performance of East Asian summer monsoon is assessed for GC2 and GC3.1, which are climate change models of the current and next climate prediction system in the Korea Meteorological Administration (KMA), GloSea5 and GloSea6. The most pronounced characteristics of GC models are strong monsoon trough and the weakening of the Western North Pacific Subtropical High (WNPSH). These are related to the weakening of the southwesterly wind and resulting weak monsoon band toward the Korean Peninsula. The GC3.1 is known to have improved the model configuration version compared to GC2, such as cloud physics and ocean parameters. We can confirm that the overall improvements of GC3.1 against GC2, especially in pressure, 850 hPa wind fields, and vertical wind shear. Also, the precipitation band stagnant in the south of 30°N in late spring is improved, therefore the biases of rainy onset and withdrawal on the Korean Peninsula are reduced by 2~4 pentad. We also investigate the impact of initialization in comparison with GloSea5 hindcast. Compared with GCs, hindcast results show better simulation within 1 month lead time, especially in pressure and 850 hPa wind fields, which can be expected to the improvement of WNPSH. Therefore, it is expected that the simulation performance of WNPSH will be improved in the result of applying the initialization of GloSea6.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「기후예측 현업 시스템 개발」(KMA2018-00322) 의 지원으로 수행되었습니다.

References

  1. Andrews, T., and Coauthors, 2019: Forcings, feedbacks, and climate sensitivity in HadGEM3-GC3.1 and UKESM1. J. Adv. Model. Earth Sy., 11, 4377-4394, doi:10.1029/2019MS001866.
  2. Boo, K.-O., G. Martin, A. Sellar, C. Senior, and Y.-H. Byun, 2011: Evaluating the East Asian monsoon simulation in climate models. J. Geophys. Res. Atmos., 116, D01109, doi:10.1029/2010JD014737.
  3. Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: observations and microphysical effects. Q. J. R. Meteorol. Soc., 140, 583-594, doi:10.1002/qj.2140.
  4. Chang, C.-P., and G. T.-J. Chen, 1995: Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea. Mon. Wea. Rev., 123, 3254-3267. https://doi.org/10.1175/1520-0493(1995)123<3254:TCAWSM>2.0.CO;2
  5. Chen, J., P. Zhao, S. Yang, G. Liu, and X. Zhou, 2013: Simulation and dynamical prediction of the summer Asian-Pacific Oscillation and associated climate anomalies by the NCEP CFSv2. J. Climate, 26, 3644-3656, doi:10.1175/JCLI-D-12-00368.1.
  6. Cheng, T. F., M. Lu, and L. Dai, 2019: The zonal oscillation and the driving mechanisms of the extreme western North Pacific subtropical high and its impacts on East Asian summer precipitation. J. Climate, 32, 3025-3050, doi:10.1175/JCLI-D-18-0076.1.
  7. Flocco, D., D. L. Feltham, and A. K. Turner, 2010: Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. Oceans, 115, C08012, doi:10.1029/2009JC005568.
  8. Guo, Q.-Y., 1983: The summer monsoon intensity index in East Asia and its variation. Acta Geogr. Sin., 38, 208- 217 (in Chinese).
  9. Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. H. Kripalani, and K.-S. Yun, 2018: Linkages between the South and East Asian summer monsoons: a review and revisit. Climate Dyn, 51, 4207-4227, doi:10.1007/s00382-017- 3773-z.
  10. Han, J., and H. Wang, 2007: Interdecadal variability of the East Asian summer monsoon in an AGCM. Adv. Atmos. Sci., 24, 808-818. https://doi.org/10.1007/s00376-007-0808-
  11. Hong, S.-Y., 2004: Comparison of heavy rainfall mechanisms in Korea and the central US. J. Meteor. Soc. Japan Ser. II, 82, 1469-1479. https://doi.org/10.2151/jmsj.2004.1469
  12. Kang, I.-S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383-395. https://doi.org/10.1007/s00382-002-0245-9
  13. Kim, H.-R., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021: The KMA Global Seasonal forecasting system (GloSea6) - Part 1: operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos.2021.31.3.341 (in Korean with English abstract).
  14. Kwon, M., J.-G. Jhun, B. Wang, S.-I. An, and J.-S. Kug, 2005: Decadal change in relationship between east Asian and WNP summer monsoons. Geophys. Res. Lett., 32, L16709. https://doi.org/10.1029/2005GL023026
  15. Kwon, S.-H., K.-O. Boo, S. Shim, and Y.-H. Byun, 2017: Evaluation of the East Asian summer monsoon season simulated in CMIP5 models and the future change. Atmosphere, 27, 133-150, doi:10.14191/Atmos.2017. 27.2.133 (in Korean with English abstract).
  16. Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 2461-2482. https://doi.org/10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2
  17. Lee, S.-J., Y.-K. Hyun, S.-M. Lee, S.-O. Hwang, J. Lee, and K.-O. Boo, 2020: Prediction skill for East Asian summer monsoon indices in a KMA Global Seasonal Forecasting System (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/Atmos.2020.30.3.293 (in Korean with English abstract).
  18. Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950~2000. Climate Dyn., 34, 501-514, doi:10.1007/s00382-008-0482-7.
  19. Liu, Y., P. H. Daum, H. Guo, and Y. Peng, 2008: Dispersion bias, dispersion effect, and the aerosol-cloud conundrum. Environ. Res. Lett., 3, 045021. https://doi.org/10.1088/1748-9326/3/4/045021
  20. Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha, 2014: GO5.0: the joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069-1092, doi:10.5194/gmd-7-1069-2014.
  21. Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 2221-2230, doi:10.5194/gmd-8-2221-2015.
  22. Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018.
  23. Rodriguez, J. M., S. F. Milton, and C. Marzin, 2017: The East Asian atmospheric water cycle and monsoon circulation in the Met Office Unified Model. J. Geophys. Res. Atmos., 122, 10246-10265. https://doi.org/10.1002/2016JD025460
  24. Seo, K.-H., J.-H. Son, J.-Y. Lee, and H.-S. Park, 2015: Northern East Asian monsoon precipitation revealed by airmass variability and its prediction. J. Climate, 28, 6221-6233, doi:10.1175/JCLI-D-14-00526.1.
  25. Shonk, J. K. P., A. G. Turner, A. Chevuturi, L. J. Wilcox, A. J. Dittus, and E. Hawkins, 2020: Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20th century. Atmos. Chem. Phys., 20, 14903-14915, doi:10.5194/acp-20-14903-2020.
  26. Stephan, C. C., N. P. Klingaman, P. L. Vidale, A. G. Turner, M.-E. Demory, and L. Guo, 2018: Intraseasonal summer rainfall variability over China in the MetUM GA6 and GC2 configurations. Geosci. Model Dev., 11, 3215-3233, doi:10.5194/gmd-11-3215-2018.
  27. Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions. Geosci. Model Dev., 11, 3187-3213, doi:10.5194/gmd-11-3187-2018.
  28. Sui, C.-H., P.-H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701. https://doi.org/10.1029/2006GL029204
  29. Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487-1520, doi:10.5194/gmd-10-1487-2017.
  30. Walters, D., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963, doi:10.5194/gmd-12-1909-2019.
  31. Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629-638. https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2
  32. Wang, B., and LinHo, 2002: Rainy season of the Asian- Pacific summer monsoon. J. Climate, 15, 386-398. https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
  33. Wang, B., Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449-4463. https://doi.org/10.1175/2008JCLI2183.1
  34. Wang, S., and H. Zuo, 2016: Effect of the East Asian westerly jet;s intensity on summer rainfall in the Yangtze River valley and its mechanism. J. Climate, 29, 2395-2406, doi:10.1175/JCLI-D-15-0259.1.
  35. Wang, Y., B. Wang, and J.-H. Oh, 2001: Impact of the preceding El Nino on the East Asian summer atmosphere circulation. J. Meteor. Soc. Japan Ser. II, 79, 575-588. https://doi.org/10.2151/jmsj.79.575
  36. Williams, K. D., and Coauthors, 2018: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J. Adv. Model. Earth Sy., 10, 357-380, doi:10.1002/2017MS001115.
  37. Xin, X., T. Wu, W. Jie, and J. Zhang, 2021: Impact of higher resolution on precipitation over China in CMIP6 HighResMIP models. Atmosphere, 12, 762, doi:10.3390/atmos12060762.
  38. Yihui, D., and J. C. L. Chan, 2005: The East Asian summer monsoon: an overview. Meteorol. Atmos. Phys., 89, 117-142. https://doi.org/10.1007/s00703-005-0125-z
  39. Yun, K.-S., J.-Y. Lee, and K.-J. Ha, 2014: Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient. J. Geophys. Res. Atmos., 119, 8104-8116, doi:10.1002/2014JD021692.
  40. Zhou, T., and Z. Li, 2002: Simulation of the east asian summer monsoon using a variable resolution atmospheric GCM. Climate Dyn., 19, 167-180. https://doi.org/10.1007/s00382-001-0214-8
  41. Zhou, T., D. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon recent progress and state of affairs. Meteorol. Z., 455-467.