• Title/Summary/Keyword: normalized correlation coefficient

Search Result 104, Processing Time 0.03 seconds

Estimation for Red Pepper(Capsicum annum L.) Biomass by Reflectance Indices with Ground-Based Remote Sensor (지상부 원격탐사 센서의 반사율지수에 의한 고추 생체량 추정)

  • Kim, Hyun-Gu;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.79-87
    • /
    • 2009
  • Pot experiments using sand culture were conducted in 2004 under greenhouse conditions to evaluate the effect of nitrogen deficiency on red pepper biomass. Nitrogen stress was imposed by implementing 6 levels (40% to 140%) of N in Hoagland's nutrient solution for red pepper. Canopy reflectance measurements were made with hand held spectral sensors including $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$, and $Field\;Scout^{TM}$ Chlorophyll meter, and a spectroradiometer as well as Minolta SPAD-502 chlorophyll meter. Canopy reflectance and dry weight of red pepper were measured at five growth stages, the 30th, 40th, 50th, 80th and 120th day after planting(DAT). Dry weight of red pepper affected by nitrogen stress showed large differences between maximum and minimum values at the 120th DAT ranged from 48.2 to $196.6g\;plant^{-1}$, respectively. Several reflectance indices obtained from $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$ and Spectroradiometer including chlorophyll readings were compared for evaluation of red pepper biomass. The reflectance indices such as rNDVI, aNDVI and gNDVI by the $Crop\;Circle^{TM}$ sensor showed the highest correlation coefficient with dry weight of red pepper at the 40th, 50th, and 80th DAT, respectively. Also these reflectance indices at the same growth station was closely correlated with dry weight, yield, and nitrogen uptake of red pepper at the 120th DAT, especially showing the best correlation coefficient at the 80th DAT. From these result, the aNDVI at the 80th DAT can significantly explain for dry weight of red pepper at the 120th DAT as well as for application level of nitrogen fertilizer. Consequently ground remote sensing as a non-destructive real-time assessment of plant nitrogen status was thought to be a useful tool for in season nitrogen management for red pepper providing both spatial and temporal information.

Inverse Estimation of Geoacoustic Parameters in Shallow Water Using tight Bulb Sound Source (천해환경에서 전구음원을 이용한 지음향인자의 역추정)

  • 한주영;이성욱;나정열;김성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • An inversion method is presented for the determination of the compressional wave speed, compressional wave attenuation, thickness of the sediment layer and density as a function of depth for a horizontally stratified ocean bottom. An experiment for estimating those properties was conducted in the shallow water of South Sea in Korea. In the experiment, a light bulb implosion and the propagating sound were measured using a VLA (vertical line array). As a method for estimating the geoacoustic properties, a coherent broadband matched field processing combined with Genetic Algorithm was employed. When a time-dependent signal is very short, the Fourier transform results are not accurate, since the frequency components are not locatable in time and the windowed Fourier transform is limited by the length of the window. However, it is possible to do this using the wavelet transform a transform that yields a time-frequency representation of a signal. In this study, this transform is used to identify and extract the acoustic components from multipath time series. The inversion is formulated as an optimization problem which maximizes the cost function defined as a normalized correlation between the measured and modeled signals in the wavelet transform coefficient vector. The experiments and procedures for deploying the light bulbs and the coherent broadband inversion method are described, and the estimated geoacoustic profile in the vicinity of the VLA site is presented.

Estimating the Spatial Distribution of Rumex acetosella L. on Hill Pasture using UAV Monitoring System and Digital Camera (무인기와 디지털카메라를 이용한 산지초지에서의 애기수영 분포도 제작)

  • Lee, Hyo-Jin;Lee, Hyowon;Go, Han Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.365-369
    • /
    • 2016
  • Red sorrel (Rumex acetosella L.), as one of exotic weeds in Korea, was dominated in grassland and reduced the quality of forage. Improving current pasture productivity by precision management requires practical tools to collect site-specific pasture weed data. Recent development in unmanned aerial vehicle (UAV) technology has offered cost effective and real time applications for site-specific data collection. To map red sorrel on a hill pasture, we tested the potential use of an UAV system with digital cameras (visible and near-infrared (NIR) camera). Field measurements were conducted on grazing hill pasture at Hanwoo Improvement Office, Seosan City, Chungcheongnam-do Province, Korea on May 17, 2014. Plant samples were obtained at 20 sites. An UAV system was used to obtain aerial photos from a height of approximately 50 m (approximately 30 cm spatial resolution). Normalized digital number values of Red, Green, Blue, and NIR channels were extracted from aerial photos. Multiple linear regression analysis results showed that the correlation coefficient between Rumex content and 4 bands of UAV image was 0.96 with root mean square error of 9.3. Therefore, UAV monitoring system can be a quick and cost effective tool to obtain spatial distribution of red sorrel data for precision management of hilly grazing pasture.

Diagnostic Performance of Diffusion-Weighted Steady-State Free Precession in Differential Diagnosis of Neoplastic and Benign Osteoporotic Vertebral Compression Fractures: Comparison to Diffusion-Weighted Echo-Planar Imaging

  • Shin, Jae Ho;Jeong, Soh Yong;Lim, Jung Hyun;Park, Jeongmi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.3
    • /
    • pp.154-161
    • /
    • 2017
  • Purpose: To evaluate the diagnostic performance of diffusion-weighted steady-state free precession (DW-SSFP) in comparison to diffusion-weighted echo-planar imaging (DW-EPI) for differentiating the neoplastic and benign osteoporotic vertebral compression fractures. Materials and Methods: The subjects were 40 patients with recent vertebral compression fractures but no history of vertebroplasty, spine operation, or chemotherapy. They had received 3-Tesla (T) spine magnetic resonance imaging (MRI), including both DW-SSFP and DW-EPI sequences. The 40 patients included 20 with neoplastic vertebral fracture and 20 with benign osteoporotic vertebral fracture. In each fracture lesion, we obtained the signal intensity normalized by the signal intensity of normal bone marrow (SI norm) on DW-SSFP and the apparent diffusion coefficient (ADC) on DW-EPI. The correlation between the SI norm and the ADC in each lesion was analyzed using linear regression. The optimal cut-off values for the diagnosis of neoplastic fracture were determined in each sequence using Youden's J statistics and receiver operating characteristic curve analyses. Results: In the neoplastic fracture, the median SI norm on DW-SSFP was higher and the median ADC on DW-EPI was lower than the benign osteoporotic fracture (5.24 vs. 1.30, P = 0.032, and 0.86 vs. 1.48, P = 0.041, respectively). Inverse linear correlations were evident between SI norm and ADC in both neoplastic and benign osteoporotic fractures (r = -0.45 and -0.61, respectively). The optimal cut-off values for diagnosis of neoplastic fracture were SI norm of 3.0 in DW-SSFP with the sensitivity and specificity of 90.4% (95% confidence interval [CI]: 81.0-99.0) and 95.3% (95% CI: 90.0-100.0), respectively, and ADC of 1.3 in DW-EPI with the sensitivity and specificity of 90.5% (95% CI: 80.0-100.0) and 70.4% (95% CI: 60.0-80.0), respectively. Conclusion: In 3-T MRI, DW-SSFP has comparable sensitivity and specificity to DW-EPI in differentiating the neoplastic vertebral fracture from the benign osteoporotic vertebral fracture.

PM2.5 Simulations for the Seoul Metropolitan Area: (III) Application of the Modeled and Observed PM2.5 Ratio on the Contribution Estimation (수도권 초미세먼지 농도모사: (III) 관측농도 대비 모사농도 비율 적용에 따른 기여도 변화 검토)

  • Bae, Changhan;Yoo, Chul;Kim, Byeong-Uk;Kim, Hyun Cheol;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.445-457
    • /
    • 2017
  • In this study, we developed an approach to better account for uncertainties in estimated contributions from fine particulate matter ($PM_{2.5}$) modeling. Our approach computes a Concentration Correction Factor (CCF) which is a ratio of observed concentrations to baseline model concentrations. We multiply modeled direct contribution estimates with CCF to obtain revised contributions. Overall, the modeling system showed reasonably good performance, correlation coefficient R of 0.82 and normalized mean bias of 2%, although the model underestimated some PM species concentrations. We also noticed that model biases vary seasonally. We compared contribution estimates of major source sectors before and after applying CCFs. We observed that different source sectors showed variable magnitudes of sensitivities to the CCF application. For example, the total primary $PM_{2.5}$ contribution was increased $2.4{\mu}g/m^3$ or 63% after the CCF application. Out of a $2.4{\mu}g/m^3$ increment, line sources and area source made up $1.3{\mu}g/m^3$ and $0.9{\mu}g/m^3$ which is 92% of the total contribution changes. We postulated two major reasons for variations in estimated contributions after the CCF application: (1) monthly variability of unadjusted contributions due to emission source characteristics and (2) physico-chemical differences in environmental conditions that emitted precursors undergo. Since emissions-to-$PM_{2.5}$ concentration conversion rate is an important piece of information to prioritize control strategy, we examined the effects of CCF application on the estimated conversion rates. We found that the application of CCFs can alter the rank of conversion efficiencies of source sectors. Finally, we discussed caveats of our current approach such as no consideration of ion neutralization which warrants further studies.

Effect of Electrical Stimulation using ABR and ECochG Analysis based on Jastreboff Tinnitus Mocel (Jastreboff 이명 모델에서의 ABR과 ECochG 신호분석을 통한 전기자극의 효과)

  • 임재중;김경식;김남균;전병훈
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.471-477
    • /
    • 1999
  • Many researches have been performed whether electrical stimulation could be used for diagnosis and treatment on the auditory system impairment. Unfortunately, there were no standard methods or theoretical background for choosing stimulus conditions because of the lack of understanding on the transmission of electrical stimulation through the auditory pathway. This research was conducted to observe the effect of electrical stimulation on the tinnitus-induced animals. Nine guniea pigs were used for the experment and divided into two groups, five animals for the experimental group(A) and four animals for the control group(B). Experimental conditions were divided into four steps, before tinnitus induction and 1, 6, 12 hours after tinnitus induction using salicylate based on the Jastreboff model. In each experimental condition, ABR and ECochG were obtained, and autocorrelation coefficients were calculated from normalized waveforms based on rms values. Sum of all the autocorrelation coefficients was extracted as a parameter to observe the changes between before and after the electrical stimulation. As a result, ABR parameter values were rapidly increased 6 hours after tinnitus induction, the gradually returned back to the initial state. On the other hand, when electrical stimulation was applied, parameter values did not change compared with the initial sate. Parameter values of ECochG showed that the effect of electrical stimulation appeared 12 hours after the tinnitus induction. It was concluded that an electrical stimulation to the tinnitus-induced model changes the correlation coefficients of ABR and ECochG waveforms.

  • PDF

Security of Image Information using Steganography and QR Code in IoT (IoT에서 스테가노그라피와 QR 코드를 이용한 영상 정보의 보안)

  • Im, Yong-Soon;Kang, Eun-Young;Park, Jae-Pyo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • The security of the image information is very important in many areas of the IoT(Internet of Things), and study a number of ways to display the security (copyright, etc.). In this paper, information of image that is used by the IoT is converted to a DCT(Discrete Cosine Transform) and QC(Quantization Coefficient). And watermark (message) is to create a new encoded message(WMQR) through a QR Code. QC and WMQR applies LSB steganography techniques, can get the security (copyright, etc.) of image information. LSB steganographic techniques may be inserted according to a message (Watermark) to determine the location (Secret Key). The encoded image is sent to the recipient via the Internet. The reverse process can be obtained image and a QR code, a watermark (Message). A method for extracting a watermark from the security of the image information is coded using only the image and Secret Key, through the DCT and quantization process, so obtained by separating the watermark (Message) for the image. In this paper, we were able to improve the security of the method of image information, the image quality of the image by the simulations (PSNR), in turn, benefits were also normalized correlation (NC) and security.

Signatures Verification by Using Nonlinear Quantization Histogram Based on Polar Coordinate of Multidimensional Adjacent Pixel Intensity Difference (다차원 인접화소 간 명암차의 극좌표 기반 비선형 양자화 히스토그램에 의한 서명인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.375-382
    • /
    • 2016
  • In this paper, we presents a signatures verification by using the nonlinear quantization histogram of polar coordinate based on multi-dimensional adjacent pixel intensity difference. The multi-dimensional adjacent pixel intensity difference is calculated from an intensity difference between a pair of pixels in a horizontal, vertical, diagonal, and opposite diagonal directions centering around the reference pixel. The polar coordinate is converted from the rectangular coordinate by making a pair of horizontal and vertical difference, and diagonal and opposite diagonal difference, respectively. The nonlinear quantization histogram is also calculated from nonuniformly quantizing the polar coordinate value by using the Lloyd algorithm, which is the recursive method. The polar coordinate histogram of 4-directional intensity difference is applied not only for more considering the corelation between pixels but also for reducing the calculation load by decreasing the number of histogram. The nonlinear quantization is also applied not only to still more reflect an attribute of intensity variations between pixels but also to obtain the low level histogram. The proposed method has been applied to verified 90(3 persons * 30 signatures/person) images of 256*256 pixels based on a matching measures of city-block, Euclidean, ordinal value, and normalized cross-correlation coefficient. The experimental results show that the proposed method has a superior to the linear quantization histogram, and Euclidean distance is also the optimal matching measure.

Projection on First Flowering Date of Cherry, Peach and Pear in 21st Century Simulated by WRFv3.4 Based on RCP 4.5 and 8.5 Scenarios (WRF를 이용한 RCP 4.5와 8.5 시나리오 하의 21세기 벚, 복숭아, 배 개화일 변화 전망)

  • Hur, Jina;Ahn, Joong-Bae;Shim, Kyo-Moon
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.693-706
    • /
    • 2015
  • A shift of first fowering date (FFD) of spring blossoms (cherry, peach and pear) over the northest Asia under global warming is investiaged using dynamically downscaled daily temperature data with 12.5 km resolution. For the study, we obatained gridded daily data with Historical (1981~2010), and Representative Concentration Pathway (RCP) (2021~2100) 4.5 and 8.5 scenarios which were produced by WRFv3.4 in conjunction with HadGEM2-AO. A change on FFDs in 21st century is estimated by applying daily outputs of WRFv3.4 to DTS phonological model. Prior to projection on future climate, the performances of both WRFv3.4 and DTS models are evaluated using spatial distribution of climatology and SCR diagram (Normalized standard deviation-Pattern correlation coefficient-Root mean square difference). According to the result, WRFv3.4 and DTS models well simulated a feature of the terrain following characteristics and a general pattern of observation with a marigin of $1.4^{\circ}C$ and 5~6 days. The analysis reveals a projected advance in FFDs of cherry, peach and pear over the northeast Asia by 2100 of 15.4 days (9.4 days). 16.9 days (10.4 days) and 15.2 days (9.5 days), respectively, compared to the Historical simulation due to a increasing early spring (Februrary to April) temperature of about $4.9^{\circ}C$ ($2.9^{\circ}C$) under the RCP 8.5 (RCP 4.5) scenarios. This indicates that the current flowering of the cherry, peach and pear over analysis area in middle or end of April is expected to start blooming in early or middle of April, at the end of this century. The present study shows the dynamically downscaled daily data with high-resolution is helpeful in offering various useful information to end-users as well as in understanding regional climate change.

A Simple Method for Classifying Land Cover of Rice Paddy at a 1 km Grid Spacing Using NOAA-AVHRR Data (NOAA-AVHRR 자료를 이용한 1 km 해상도 벼논 피복의 간이분류법)

  • 구자민;홍석영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.215-219
    • /
    • 2001
  • Land surface parameterization schemes for atmospheric models as well as decision support tools for ecosystem management require a frequent updating of land cover classification data for regional to global scales. Rice paddies have not been treated independently from other agricultural land classes in many classification systems, despite their atmospheric and ecological significance. A simple but improved method over conventional land cover classification schemes for rice paddy is suggested. Normalized difference vegetation index (NDVI) was calculated for the land area of South Korea at a 1km by 1 km resolution from the visible and the near-infrared channel reflectances of NOAA-AVHRR (Advanced Very High Resolution Radiometer). Monthly composite images of daily maximum NDVI were prepared for May and August, and used to classify 4 major land cover classes : urban, farmland, forests and water body. Among the pixels classified as "forests" in August, those classified as "water body" in May were assigned a "rice paddy" class. The distribution pattern of "rice paddy" pixels was very similar to the reported rice acreage of 1,455 Myons, which is the smallest administrative land unit in Korea. The correlation coefficient between the estimated and the reported acreage of Myons was 0.7, while 0.5 was calculated from the USGS classification.calculated from the USGS classification.

  • PDF