Estimation for Red Pepper(Capsicum annum L.) Biomass by Reflectance Indices with Ground-Based Remote Sensor

지상부 원격탐사 센서의 반사율지수에 의한 고추 생체량 추정

  • Kim, Hyun-Gu (Chungju-si Agricultural Technology Service Center) ;
  • Kang, Seong-Soo (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Hong, Soon-Dal (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2008.12.08
  • Accepted : 2009.02.18
  • Published : 2009.04.30

Abstract

Pot experiments using sand culture were conducted in 2004 under greenhouse conditions to evaluate the effect of nitrogen deficiency on red pepper biomass. Nitrogen stress was imposed by implementing 6 levels (40% to 140%) of N in Hoagland's nutrient solution for red pepper. Canopy reflectance measurements were made with hand held spectral sensors including $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$, and $Field\;Scout^{TM}$ Chlorophyll meter, and a spectroradiometer as well as Minolta SPAD-502 chlorophyll meter. Canopy reflectance and dry weight of red pepper were measured at five growth stages, the 30th, 40th, 50th, 80th and 120th day after planting(DAT). Dry weight of red pepper affected by nitrogen stress showed large differences between maximum and minimum values at the 120th DAT ranged from 48.2 to $196.6g\;plant^{-1}$, respectively. Several reflectance indices obtained from $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$ and Spectroradiometer including chlorophyll readings were compared for evaluation of red pepper biomass. The reflectance indices such as rNDVI, aNDVI and gNDVI by the $Crop\;Circle^{TM}$ sensor showed the highest correlation coefficient with dry weight of red pepper at the 40th, 50th, and 80th DAT, respectively. Also these reflectance indices at the same growth station was closely correlated with dry weight, yield, and nitrogen uptake of red pepper at the 120th DAT, especially showing the best correlation coefficient at the 80th DAT. From these result, the aNDVI at the 80th DAT can significantly explain for dry weight of red pepper at the 120th DAT as well as for application level of nitrogen fertilizer. Consequently ground remote sensing as a non-destructive real-time assessment of plant nitrogen status was thought to be a useful tool for in season nitrogen management for red pepper providing both spatial and temporal information.

지상 원격탐사 센서를 이용하여 질소 스트레스에 의한 고추의 생체량을 평가하기 위하여 사경재배를 이용한 포트실험을 수행하였다. 고추의 질소 스트레스 처리는 Hoagland 영양액 질소농도를 기준으로 40%에서 140% 까지 20% 간격으로 6개 수준으로 하였다. 고추는 이식후 120일 동안 생육시켰고 지상부의 생체중과 건물중, 잎의 질소흡수량과 엽록소 함량 그리고 수량을 조사하였다. 지상 원격탐사의 센서종류는 SPAD-502(Minolta)와 $Field\;Scout^{TM}$(CM1000, Spectrum) 엽록소 측정기, Spectroradiometer(LI-1800, Licor Inc.), $Crop\;Circle^{TM}$(Holland Scientific), 그리고 $GreenSeeker^{TM}$(Ntech Industries)를 사용하였다. 이식 후 120일째 고추의 지상부 건물중은 48.2 g/plant에서 196.6 g/plant로 큰 차이를 보였으며 변동계수는 27.8%였다. 이식후 40일, 50일 및 80일째 각 생육시기에서 원격탐사 반사율 지수들은 고추의 지상부 생체 중 및 건물중과 유의성 있는 정의 상관을 보였으며, 특히 $Crop\;Circle^{TM}$에 의한 반사율 지수들이 가장 양호한 상관계수를 보였다. 또한 고추 수확기인 이식후 120일째 고추수량, 지상부 건물중, 그리고 잎의 질소 흡수량은 생육중반기 원격탐사 센서의 반사율 지수들과 유의성 있는 정의 상관을 보였고, 특히 이식후 80일째 측정된 $Crop\;Circle^{TM}$의 aNDVI는 가장 양호한 상관계수를 보였다. 이러한 결과로부터 이식후 80일째 aNDVI는 수확기 고추의 생체량 및 질소 시비수준을 신뢰성 있게 예측할 수 있었다. 따라서 비파괴 실시간 지상원격 탐사 반사율 지수는 고추의 생육중반기 질소관리를 위한 효율적 도구로 활용 가능할 것으로 생각되었다.

Keywords

References

  1. Arnon, D.J. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidases in Beta vilgaris. Plant Phys. 24:1-15 https://doi.org/10.1104/pp.24.1.1
  2. Avery, T. E. and G. L. Belin. 1992. Fundamentals of remote sensing and airphoto interpretation. 5th ed. Macmillan, New York
  3. Blackmer, T. M., J. S. Schepers, and G. E. Meyer. 1995. Remote sensing to detect nitrogen deficiency in corn. p. 505-512. In P.C. Robert, R.H. Rust and W.E. Larson (ed.) Proc. of Site-Specific Management for Agric. Systems, Minneapolis, Minn, 27-30 March 1994. ASA-CSSA-SSSA, Madison, WI
  4. Bundy, L. G. and T. W. Andraski. 1993. Soil and plant nitrogen availability tests for corn following alfalfa. J. Production Agriculture. 6(2) : 200-206 https://doi.org/10.2134/jpa1993.0200
  5. Carlson, T. N., W. J. Capehart, and R. R. Gillies. 1995. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sens. Environ. 54 : 161-167 https://doi.org/10.1016/0034-4257(95)00139-R
  6. Cater, G. A. and A. K. Knapp. 2001. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 88 : 677-684 https://doi.org/10.2307/2657068
  7. Dalal, R. C. and R.J. Henry. 1986. Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 50 : 120-123 https://doi.org/10.2136/sssaj1986.03615995005000010023x
  8. Darryl, D. W. 1996. Soil and plant tissue testing for nitrogen availability indexes. Soil Sci. Soc. Am. J. 42 : 747-750
  9. Daughtry, C. S. T., K. P. Gallo, S. N. Goward, S. D. Prince, and W.P. Kustas. 1992. Spectral estimates of absorbed radiation and photo-mass production in corn and soybean canopies. Remote Sens. Environ. 39 : 141-152 https://doi.org/10.1016/0034-4257(92)90132-4
  10. Flowers, M. Randall, W., Ronnine, H., Barry, T., and A. Meijer. 2003. Field validation of a remote sensing technique for early nitrogen application decision in wheat. Agron. J. 95 : 167-176 https://doi.org/10.2134/agronj2003.0167
  11. Fox. R. H., W. P. Piekielek, and K. M. Macneal. 1994. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat. Commun. Soil Sci. Plant Anal. 25 : 171-181 https://doi.org/10.1080/00103629409369027
  12. Gitelson, A. A., M.N. Merzlyak, and H. K. Linchtenthaler. 1996. Dictation of red edge position and chlorophyll content by reflectance measurements near 700 nm. J. Plant Physiol. 148 : 501-508 https://doi.org/10.1016/S0176-1617(96)80285-9
  13. Gitelson, A. A., M.N. Merzlyak, and O. B. Chivkunova. 2001. Optical properties and nondestructive estimation of anthocyanin content plant leaves. Photochem. Photobiol. 74 : 38-45 https://doi.org/10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2
  14. 홍순달. 2003. 지상원격탐사에 의한 질소시비의 효율적인 관리. 한국토양비료학회. 추계학술발표회 논문초록집. 23-45
  15. Hussain, F., K. F. Bronson, Y. Singh, Bijay-singh, and S. Peng. 2000. Use of Chlorophyll Meter Sufficiency Indices for Nitrogen Management of Irrigated Rice in Asia. Agron. J. 92 : 875-879
  16. Jackson, R. D. 1984. Remote sensing of vegetation characteristics for farm management. SPIE 475 : 81-96
  17. Kevin, F., T. T. Chua, J. D. Booker, J. W. Keeling, and R. J. Lascano. 2003. In-Season nitrogen status seneing in irrigated cotton: II. Leaf nitrogen and biomass. Soil Sci. Soc. Am. J. 67 : 1439-1448 https://doi.org/10.2136/sssaj2003.1439
  18. Lihong, X., W. Cao, W. Luo, D. Tingbo, and Zhu. 2004. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agron. J. 96 : 135-142. https://doi.org/10.2134/agronj2004.0135
  19. Moran, S.M., S.J. Maas, and P.J. Pinter. 1995. Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote Sensing Reviews. 12 : 335-353 https://doi.org/10.1080/02757259509532290
  20. Osborne, S. L., J. S. Schepers, D. D. Francis, and M. R. Schlemmer. 2002. Use of spectral radiance to estimate in season biomass and grain yield in nitrogen- and water- stressed corn. Crop Sci. 42 : 165-171 https://doi.org/10.2135/cropsci2002.0165
  21. Penuelas, J., I. Filella, P. Lloret, F. Munoz, and M. Vilajeliu. 1995. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 16 : 2727-2733 https://doi.org/10.1080/01431169508954588
  22. Read, J. J., L. Tarpley, J.M. Mckinion, and K.R. Reddy. Narrow - Waveband Reflectance Ratios for Remote Estimation of Nitrogen Status in Cotton. 2002. J. Environ. Qual. 31 : 1442-1452 https://doi.org/10.2134/jeq2002.1442
  23. Redelfs, M. S., L. R. Stone, E. T. Kanemasu, and M. B. Kirkham. 1987. Greenness-leaf area index relationships for seven row-crops. Agron. J. 79 : 254-259 https://doi.org/10.2134/agronj1987.00021962007900020016x
  24. Rondeaux, G., M. Strven, and F. Baret. 1996. Optimization of soiladjusted vegetation indices. Remote Sens. Environ. 55 : 95-107 https://doi.org/10.1016/0034-4257(95)00186-7
  25. Schepers, J. S., T. M. Blackmer, and D. D. Francis. 1998. Chlorophyll meter method for estimating nitrogen content in plant tissue. In Y.P. Kalra (ed.) Handbook of reference methods for plant analysis. P. 129-135. CRC Press, Boca Raton, FL
  26. Schepers, J. S. 2001. Practical applications of remote sensing. Conference proceedings of InfoAg, August 7-9, Indianopolis
  27. Shanahan, J. F., J. S. Schepers, D. D. Francis, G. E. Varvel, W. W. Wihelm, J. M. Tringe, M. K. Schlemmer, and D. J. Major. 2001. Use of remote-sensing imaery to estimate corn grain yield. Agron. J. 93 : 583-589
  28. Singh, B., Y., Singh, J. K., Ladha, K. F. Bronson, V. Balasubramanian, J. Singh, and C. S. Khind. 2002. Chlorophyll Meter- nad Leaf Color Chart-Based Nitrogen Management for Rice and Wheat in Northwestern India. Agron. J. 94 : 821-829 https://doi.org/10.2134/agronj2002.0821
  29. Stephan J. M. 1998. Estimating cotton canopy ground cover from remotely sensed scene reflectance. Agron. J. 90 : 384-388 https://doi.org/10.2134/agronj1998.00021962009000030011x
  30. Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8 : 127-150 https://doi.org/10.1016/0034-4257(79)90013-0
  31. Wang, K., Z. Q. Shen, and R. C. Wang. 1998. Effects of N nutrition on the spectral reflectance characteristics of rice leaf and canopy. J. Zhejiang Agric. Univ. 24 : 93-97
  32. Wiegand, C. L., S. J. Maas, J. K. Aase, J. L. Hatfield, P. J. Pinter, Jr., R. D. Jackson, E. T. Kanemasu, and R. L. Lapitan. 1992. Multisite analyses of spectral-biophysical data for wheat. Remote Sens. Environ. 42 : 1-21 https://doi.org/10.1016/0034-4257(92)90064-Q
  33. Yoder, B. J., and R. E. Pettigrew. 1995. Predicting nitrogon and chlorophyll content and concentrations from reflectance spectra(400-2500nm) at leaf and canopy scales. Remote Sens. Environ. 53 : 199-211 https://doi.org/10.1016/0034-4257(95)00135-N