DOI QR코드

DOI QR Code

Estimating the Spatial Distribution of Rumex acetosella L. on Hill Pasture using UAV Monitoring System and Digital Camera

무인기와 디지털카메라를 이용한 산지초지에서의 애기수영 분포도 제작

  • Lee, Hyo-Jin (GEOMEXSOFT, Ltd.) ;
  • Lee, Hyowon (Department of Agriculture, Korea National Open University) ;
  • Go, Han Jong (Department of Agriculture, Korea National Open University)
  • Received : 2016.09.19
  • Accepted : 2016.10.14
  • Published : 2016.12.31

Abstract

Red sorrel (Rumex acetosella L.), as one of exotic weeds in Korea, was dominated in grassland and reduced the quality of forage. Improving current pasture productivity by precision management requires practical tools to collect site-specific pasture weed data. Recent development in unmanned aerial vehicle (UAV) technology has offered cost effective and real time applications for site-specific data collection. To map red sorrel on a hill pasture, we tested the potential use of an UAV system with digital cameras (visible and near-infrared (NIR) camera). Field measurements were conducted on grazing hill pasture at Hanwoo Improvement Office, Seosan City, Chungcheongnam-do Province, Korea on May 17, 2014. Plant samples were obtained at 20 sites. An UAV system was used to obtain aerial photos from a height of approximately 50 m (approximately 30 cm spatial resolution). Normalized digital number values of Red, Green, Blue, and NIR channels were extracted from aerial photos. Multiple linear regression analysis results showed that the correlation coefficient between Rumex content and 4 bands of UAV image was 0.96 with root mean square error of 9.3. Therefore, UAV monitoring system can be a quick and cost effective tool to obtain spatial distribution of red sorrel data for precision management of hilly grazing pasture.

본 연구는 산지초지에서 애기수영의 분포를 신속하고 정밀하게 파악하기 위안 무인기 촬영 항공영상의 이용가능성을 실험하였다. 항공영상은 일반 디지털카메라로 촬영한 RGB 영상과 자체 제작한 NIR 카메라로 촬영한 NIR 영상을 이용하여 각각 Red, Green, Blue 벤드와 NIR 밴드를 이용하였고, 밴드조합에 따른 애기수영의 건물비율과의 상관관계를 조사하였다. 다중선형회귀분석 결과 NIR+R+G+B 밴드의 조합이 가장 높은 상관관계($R^2$, 0.96)를 보였으며, R+G+B 밴드의 조합이 다음으로 높은 상관관계를 보였고 ($R^2$, 0.91) NIR+R 밴드($R^2$, 0.45)와 NIR+G 밴드 ($R^2$, 0.27)는 상대적으로 낮은 상관관계를 보여 NIR+R+G+B 밴드조합이 애기수영 분포 파악을 위하여 가장 적합한 것을 확인하였다. R+G+B 밴드 조합의 경우 NIR+R+G+B 밴드의 조합과 비교하여 예측정확도가 큰 차이가 나지 않았으며 근적외선 카메라 없이 일반 디지털 카메라로 영상정보의 획득이 가능하기 때문에 현장적용성 면에서 장점을 가질 것으로 판단된다.

Keywords

References

  1. Bouma, J. 1997. Precision agriculture: introduction to the spatial and temporal variability of environmental quality. Lake, J.V., Bock, G.R. and Goode, J.A. Eds. pp. 5-17. John Wiley and Sons, Wageningen, The Netherlands.
  2. Di Bella, Faivre, C., Ruget, R., Seguin, F., Guerif, M., Combal, B., Weiss, M. and Rebella, C. 2004. Remote sensing capabilities to estimate pasture production in France. International Journal of Remote Sensing. 25:5359-5372. https://doi.org/10.1080/01431160410001719849
  3. Hill, M.J., Donald, G.E., Vickery, P.J., Moore, A.D. and Donnelly, J.R. 1999. Combining satellite data with a simulation model to describe spatial variability in pasture growth at a farm scale. Australian Journal of Experimental Agriculture. 39:285-300. https://doi.org/10.1071/EA98109
  4. Inoue, Y., Morinaga, S. and Tomita, A. 2000. A blimp-based remote sensing system for low altitude monitoring of plant variables: A preliminary experiment for agricultural and ecological applications. International Journal of Remote Sensing. 21:379-385. https://doi.org/10.1080/014311600210894
  5. Kawamura, K., Sakuno, Y., Tanaka, Y., Lee, H.J., Lim, J.H., Kurokawa, Y. and Watanabe. N. 2011. Mapping herbage biomass and nitrogen status in an Italian ryegrass (Lolium multiflorum L.) field using a digital video camera with balloon system. Journal of Applied Remote Sensing. 5(1):053562-053562. https://doi.org/10.1117/1.3659893
  6. Kim, Y.K., Chung, C.W., Choi, Y.S., LIM, Y.C., Han, S.Y. and Na, K.J. 2003. Effect of herbicide Application on Weed Control and Forage Production in Alpine Grassland Predominated with Red Sorrel (Rumex acetosella L.). Journal of Animal Science and Technology. 45(5):865-874. https://doi.org/10.5187/JAST.2003.45.5.865
  7. Lamb, D.W. and Brown, R.B. 2001. PA-precision agriculture: Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research. 78:117-125. https://doi.org/10.1006/jaer.2000.0630
  8. Lee, H.W., Lee, H.J., Jung, J.S. and Ko. H.J. 2015. Mapping herbage biomass on a hill pasture using a digital camera with an unmanned aerial vehicle system. Journal of the Korean Society of Grassland and Forage Science. 35(3):225-231. https://doi.org/10.5333/KGFS.2015.35.3.225
  9. Lee, I.Y., Park, J.Y., Oh, S.M., Kim, C.S., Moon, B.C., Lim, S.T. and Jung, J.W. 2001. Geographical Distribution and Characteristics of Seed Germination and Rhizomes Growth of Rumex acetosella. Journal of the Korean Society of Weed Science. 21(3):259-267.
  10. Lee, J.S., Lee, S.Y. and Choi, I.H. 1999. The Estimation of Optimal Nitrogen and Lime Application Levels on the Growth Control of Sheep Sorrel (Rumex acetocella L.) in Mountainous Pastures. Journal of the Korean Society of Grassland and Forage Science. 19(4):363-372.
  11. Mutanga, O. and Skidmore, A.K. 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing. 25:3999-4014. https://doi.org/10.1080/01431160310001654923
  12. Park, K.J., Kim, Y.J., Lee, J.K., Kim, M.J., Yoon, S.H. and Choi, S.S. 1997. Effect of Herbicide Treatments on the Dry Matter Yield and Nutrient Productivity in Rumex acetosella Dominated Pasture. Journal of the Korean Society of Grassland and Forage Science. 17(3):277-284.
  13. Rovira-M'as, F., Zhang, Q. and Reid, J.F. 2005. Creation of threedimensional crop maps based on aerial stereoimages. Biosystems Engineering. 90:251-259. https://doi.org/10.1016/j.biosystemseng.2004.11.013
  14. Schanda, E. 1978. Remote sensing of the environment. Naturwissenschaften. 65:169-173. https://doi.org/10.1007/BF00450584
  15. Starks. J.P., Zhao, D., Phillips, A.W. and Coleman, S.W. 2006. Herbage mass, nutritive value and canopy spectral reflectance of bermudagrass pastures. Grass and Forage Science. 61:101-111. https://doi.org/10.1111/j.1365-2494.2006.00514.x
  16. Sugiura, R., Noguchi, N. and Ishii, K. 2005. Remote-sensing technology for vegetation monitoring using an unmanned helicopter. Biosystems Engineering. 90:369-379. https://doi.org/10.1016/j.biosystemseng.2004.12.011
  17. Suzuki, Y., Tanaka, K., Kato, W., Okamoto, H., Kataoka, T., Shimada, H., Sugiura, T. and Shima, E. 2008. Field mapping of chemical composition of forage using hyperspectral imaging in a grass meadow. Grassland Science. 54:179-188. https://doi.org/10.1111/j.1744-697X.2008.00122.x
  18. Wallace, J.F., Caccetta, P.A. and Kiiveri, H.T. 2004. Recent developments in analysis of spatial and temporal data for landscape qualities and monitoring. Austral Ecology. 29:100-107. https://doi.org/10.1111/j.1442-9993.2004.01356.x
  19. White, J. and Hodgson, J. 1999. New Zealand pasture and crop science. NZ: Oxpord University Press, Auckland.
  20. Yoder, B.J. and Waring, R.H. 1994. The normalized difference vegetation index of small Douglas-fir canopies with varying chlorophyll concentrations. Remote Sensing of Environment. 49:81-91. https://doi.org/10.1016/0034-4257(94)90061-2
  21. Zhao, D., Starks, P.J., Brown, M.A., Phillips, W.A. and Coleman, S.W. 2007. Assessment of forage biomass and quality parameters of bermudagrass using proximal sensing of pasture canopy reflectance. Grassland Science. 53:39-49. https://doi.org/10.1111/j.1744-697X.2007.00072.x